ATI RN
chemistry for health sciences quizlet Questions
Question 1 of 5
You measure water in two containers: a 10-mL graduated cylinder with marks at every mL, and a 1-mL pipet marked at every 1 mL. If you have some water in each of the containers and add them together, to what decimal place could you report the total volume of water?
Correct Answer: C
Rationale: The correct answer is C: 1 mL. When adding volumes measured in different containers, you should report the result to the least precise measurement scale, which is the 1 mL pipet in this case. The graduated cylinder measures to the nearest mL, so the total volume should be rounded to the nearest whole mL. Reporting to a decimal place of 0.01 mL or 0.1 mL would imply a level of precision greater than what the equipment can provide. Choice D is incorrect as it exceeds the maximum volume capacity of the containers and is not relevant to the precision of the measurements.
Question 2 of 5
During a physics experiment, an electron is accelerated to 93 percent of the speed of light. What is the speed of the electron in miles per hour? (speed of light = 00 108 m/s, 1 km = 6214 mi)
Correct Answer: C
Rationale: The correct answer is C: 6.7 x 10^8 mi/h. To calculate the speed of the electron in miles per hour, we first convert the speed of light from m/s to mi/h using the conversion factor 1 km = 6214 mi. The speed of light is approximately 6.71 x 10^8 mi/h. Since the electron is at 93% of the speed of light, we multiply the speed of light by 0.93 to get the speed of the electron, which is approximately 6.25 x 10^8 mi/h. The closest choice is C: 6.7 x 10^8 mi/h. Choice A: 2.8 x 10^8 mi/h - This is incorrect as it is too low compared to the calculated speed. Choice B: 6.2 x 10^11 mi/h - This is incorrect as it is too high compared to the calculated speed. Choice
Question 3 of 5
We generally report a measurement by recording all of the certain digits plus uncertain digit(s).
Correct Answer: B
Rationale: Step 1: In measurement, certain digits are the numbers that are known for sure. Step 2: Uncertain digits are the last digit that is estimated or measured. Step 3: We record all the certain digits and one uncertain digit to indicate the precision of the measurement. Step 4: Choice A is incorrect because we do include uncertain digit(s) in the measurement. Step 5: Choice C and D are incorrect as including two or three uncertain digits would provide excessive precision beyond what is known for certain.
Question 4 of 5
On a new temperature scale (°Z), water boils at 0°Z and freezes at 0°Z. Calculate the normal human body temperature using this temperature scale. On the Celsius scale, normal human body temperature could typically be 1°C, and water boils at 0°C and freezes at 00°C.
Correct Answer: A
Rationale: To calculate normal human body temperature in °Z, we can use the formula: °Z = (°C + 100) / 2. Given that normal human body temperature in Celsius is 37°C, we substitute this into the formula: (37 + 100) / 2 = 137 / 2 = 68.5°Z. Therefore, the correct answer is A: 2968°Z, as it is the closest to 68.5°Z. Summary of other choices: B: 12.4°Z - This is too low, as human body temperature is higher. C: 111°Z - This is too high, as it exceeds the calculated value of 68.5°Z.
Question 5 of 5
Many classic experiments have given us indirect evidence of the nature of the atom. Which of the experiments listed below did not give the results described?
Correct Answer: A
Rationale: The correct answer is A because the Rutherford experiment actually disproved the Thomson "plum-pudding" model of the atom. Rutherford's experiment involved firing alpha particles at a thin gold foil and observing their scattering patterns. The results showed that atoms have a small, dense, positively charged nucleus, which contradicted the Thomson model. Choice B is correct as the experiment was indeed useful in determining the nuclear charge on the atom. Choice C is incorrect because Millikan's oil-drop experiment determined the charge on the electron, not just that it was a simple multiple. Choice D is incorrect as the electric discharge tube did show that electrons have a negative charge.