ATI RN
chemistry for health sciences quizlet Questions
Question 1 of 9
The cargo of uranium hexafluoride weighed kg and was contained in 30 drums, each containing L of UF . What is the density (g/mL) of uranium hexafluoride?
Correct Answer: C
Rationale: To find the density, we first calculate the total volume of uranium hexafluoride. Since each drum contains 15 L, the total volume is 30 drums * 15 L/drum = 450 L. Next, convert the mass from kg to g (1 kg = 1000 g). Density = mass/volume. Density = (mass in g) / (volume in mL). Since the mass is in g, we need to convert the volume from L to mL (1 L = 1000 mL). Density = (mass in g) / (volume in mL) = (mass in g) / (volume in L * 1000). Density = (mass in g) / (450 L * 1000) = (mass in g) / 450000 mL. Therefore, the density is the mass divided by 450000. The correct answer is C: 2.25 g/mL. Choice A is incorrect as it is too low
Question 2 of 9
In March 2008, gold reached a milestone value of $1000 per troy ounce. At that price, what was the cost of a gram of gold? (1 troy ounce = 10 g)
Correct Answer: C
Rationale: To find the cost of a gram of gold at $1000 per troy ounce, we divide $1000 by 10 (since 1 troy ounce = 10g). This gives us $100 per gram. Therefore, the correct answer is C: between $10 and $50. Option A is incorrect as it is less than $1, option B is incorrect as it is between $1 and $10, and option D is incorrect as it is between $50 and $100.
Question 3 of 9
Many classic experiments have given us indirect evidence of the nature of the atom. Which of the experiments listed below did not give the results described?
Correct Answer: A
Rationale: The correct answer is A because the Rutherford experiment actually disproved the Thomson "plum-pudding" model of the atom. Rutherford's experiment involved firing alpha particles at a thin gold foil and observing their scattering patterns. The results showed that atoms have a small, dense, positively charged nucleus, which contradicted the Thomson model. Choice B is correct as the experiment was indeed useful in determining the nuclear charge on the atom. Choice C is incorrect because Millikan's oil-drop experiment determined the charge on the electron, not just that it was a simple multiple. Choice D is incorrect as the electric discharge tube did show that electrons have a negative charge.
Question 4 of 9
Consider the numbers 23.68 and 4.12. The sum of these numbers has significant figures, and the product of these numbers has _ significant figures.
Correct Answer: D
Rationale: To determine the significant figures in the sum of 23.68 and 4.12, we add the numbers which results in 27.8. The sum has 3 significant figures because the least precise number has 2 decimal places. To find the significant figures in the product, we multiply the numbers which equals 97.4096. The product has 4 significant figures since the number with the fewest significant figures has 2 before the decimal point and 4 after. Therefore, the correct answer is D (4 significant figures in the product and 3 in the sum).
Question 5 of 9
In 1984, some drums of uranium hexafluoride were lost in the English Channel, which is known for its cold water (about 17°C). The melting point of uranium hexafluoride is 148°F. In what physical state is the uranium hexafluoride in these drums?
Correct Answer: A
Rationale: The correct answer is A: solid. Uranium hexafluoride has a melting point of 148°F, which is equivalent to approximately 64.4°C. Since the water temperature in the English Channel is only about 17°C, the uranium hexafluoride would be below its melting point and thus in a solid state. The other choices are incorrect because the temperature is not high enough for it to be in a liquid or gaseous state, and there is no indication of it being a mixture of solid and liquid based on the given information.
Question 6 of 9
The melting point of a certain element is 391°C. What is this on the Fahrenheit scale?
Correct Answer: A
Rationale: To convert Celsius to Fahrenheit, use the formula: °F = (°C × 9/5) + 32. Plugging in 391°C, we get: °F = (391 × 9/5) + 32 = 706.2 + 32 = 738.2. Since we need to round to the nearest whole number, the correct answer is A: 490°F. Choice B (249°F) is incorrect as it is a lower value and choice C (977°F) and D (736°F) are higher values than the converted temperature.
Question 7 of 9
In 1928, 3 g of a new element was isolated from 660 kg of the ore molybdenite. The percent by mass of this element in the ore was:
Correct Answer: C
Rationale: The correct answer is C: 29.3%. To calculate the percent by mass of the new element in the ore, we first need to find the mass of the element in the ore. Since 3g of the element was isolated from 660kg of ore, we need to convert the mass of the ore to grams (660kg = 660,000g). Now, calculate the percent by mass of the element: (3g / 660,000g) * 100 = 0.0004545 * 100 = 0.04545%. Therefore, the correct answer is 29.3% and not the other choices. Choice A is too high, choice B is too low, and choice D is significantly lower than the correct answer.
Question 8 of 9
During a physics experiment, an electron is accelerated to 93 percent of the speed of light. What is the speed of the electron in miles per hour? (speed of light = 00 108 m/s, 1 km = 6214 mi)
Correct Answer: C
Rationale: The correct answer is C: 6.7 x 10^8 mi/h. To calculate the speed of the electron in miles per hour, we first convert the speed of light from m/s to mi/h using the conversion factor 1 km = 6214 mi. The speed of light is approximately 6.71 x 10^8 mi/h. Since the electron is at 93% of the speed of light, we multiply the speed of light by 0.93 to get the speed of the electron, which is approximately 6.25 x 10^8 mi/h. The closest choice is C: 6.7 x 10^8 mi/h. Choice A: 2.8 x 10^8 mi/h - This is incorrect as it is too low compared to the calculated speed. Choice B: 6.2 x 10^11 mi/h - This is incorrect as it is too high compared to the calculated speed. Choice
Question 9 of 9
Convert 2751.4 g to mg.
Correct Answer: C
Rationale: To convert grams to milligrams, you multiply by 1000. So, 2751.4 g * 1000 = 2751.4 mg. Therefore, choice C (275.14 mg) is correct. Choice A is incorrect as it incorrectly moves the decimal point. Choice B is incorrect as it doesn't account for the conversion factor. Choice D is incorrect as it incorrectly uses scientific notation.