ATI RN
chemistry for health sciences quizlet Questions
Question 1 of 5
In 1984, some drums of uranium hexafluoride were lost in the English Channel, which is known for its cold water (about 17°C). The melting point of uranium hexafluoride is 148°F. In what physical state is the uranium hexafluoride in these drums?
Correct Answer: A
Rationale: The correct answer is A: solid. Uranium hexafluoride has a melting point of 148°F, which is equivalent to approximately 64.4°C. Since the water temperature in the English Channel is only about 17°C, the uranium hexafluoride would be below its melting point and thus in a solid state. The other choices are incorrect because the temperature is not high enough for it to be in a liquid or gaseous state, and there is no indication of it being a mixture of solid and liquid based on the given information.
Question 2 of 5
The density of gasoline is 7025 g/mL at 20°C. When gasoline is added to water:
Correct Answer: A
Rationale: The correct answer is A because gasoline has a lower density compared to water. Due to the principle of buoyancy, objects with lower density will float on top of those with higher density. Gasoline will float on top of water because it is less dense. Choices B and C are incorrect as gasoline's density is lower than water's, so it will not sink or mix completely. Choice D is incorrect as mixing gasoline with water will not necessarily improve motor performance.
Question 3 of 5
A 0 mL sample of glycerol has a mass of 2 grams. What is the mass of a 57-mL sample of glycerol?
Correct Answer: B
Rationale: To find the mass of a 57-mL sample of glycerol, we use the given mass-to-volume ratio. Since 0 mL has a mass of 2 grams, the mass-to-volume ratio is 2g/0mL = 2g/mL. Therefore, for a 57-mL sample, we multiply 2g/mL by 57 mL to get 114 grams, which corresponds to answer choice B. Choice A (8.8 g) is incorrect because it does not align with the calculated mass of 114 g for a 57-mL sample. Choices C (2.9 104 g) and D (72 g) are also incorrect as they are not consistent with the mass-to-volume ratio of 2g/mL provided in the question.
Question 4 of 5
The cargo of uranium hexafluoride weighed kg and was contained in 30 drums, each containing L of UF . What is the density (g/mL) of uranium hexafluoride?
Correct Answer: C
Rationale: To find the density, we first calculate the total volume of uranium hexafluoride. Since each drum contains 15 L, the total volume is 30 drums * 15 L/drum = 450 L. Next, convert the mass from kg to g (1 kg = 1000 g). Density = mass/volume. Density = (mass in g) / (volume in mL). Since the mass is in g, we need to convert the volume from L to mL (1 L = 1000 mL). Density = (mass in g) / (volume in mL) = (mass in g) / (volume in L * 1000). Density = (mass in g) / (450 L * 1000) = (mass in g) / 450000 mL. Therefore, the density is the mass divided by 450000. The correct answer is C: 2.25 g/mL. Choice A is incorrect as it is too low
Question 5 of 5
Avogadro's hypothesis states that:
Correct Answer: D
Rationale: Rationale for correct answer D: Avogadro's hypothesis states that equal volumes of different gases at the same temperature and pressure contain an equal number of particles. This is because gases behave similarly under these conditions due to the ideal gas law. Avogadro's hypothesis is crucial in understanding the behavior of gases and is fundamental in the study of chemistry. Summary of incorrect choices: A: This statement is about the relative mass of atoms of different elements, not Avogadro's hypothesis. B: This statement relates to the law of definite proportions, not Avogadro's hypothesis. C: This statement refers to the law of multiple proportions, not Avogadro's hypothesis.