Consider the numbers 23.68 and 4.12. The sum of these numbers has significant figures, and the product of these numbers has _ significant figures.

Questions 32

ATI RN

ATI RN Test Bank

chemistry for health sciences quizlet Questions

Question 1 of 9

Consider the numbers 23.68 and 4.12. The sum of these numbers has significant figures, and the product of these numbers has _ significant figures.

Correct Answer: D

Rationale: To determine the significant figures in the sum of 23.68 and 4.12, we add the numbers which results in 27.8. The sum has 3 significant figures because the least precise number has 2 decimal places. To find the significant figures in the product, we multiply the numbers which equals 97.4096. The product has 4 significant figures since the number with the fewest significant figures has 2 before the decimal point and 4 after. Therefore, the correct answer is D (4 significant figures in the product and 3 in the sum).

Question 2 of 9

The formula of water, H O, suggests:

Correct Answer: B

Rationale: The formula for water is H₂O, indicating there are two hydrogen atoms and one oxygen atom per molecule. This is because the subscript 2 in H₂ represents two hydrogen atoms, and O represents one oxygen atom. Therefore, choice B is correct. Choices A, C, and D are incorrect because they do not accurately represent the composition of water molecules. Choice A suggests twice as much mass of hydrogen than oxygen, which is not true. Choice C suggests twice as much mass of oxygen than hydrogen, which is also incorrect. Choice D implies there are two oxygen atoms in a water molecule, which is inaccurate.

Question 3 of 9

The density of liquid mercury is 6 g/mL. What is its density in units of ? (54 cm = 1 in., 205 lb = 1 kg)

Correct Answer: C

Rationale: To find the density of liquid mercury in units of g/cm³, we need to convert the density from g/mL to g/cm³. The conversion factor is 1 mL = 1 cm³. Given the density of mercury as 6 g/mL, it is equivalent to 6 g/cm³. Therefore, the correct answer is 1.01 x 10¹ g/cm³ (choice C). Choice A: 1.57 x 10² is too large for the density of liquid mercury. Choice B: 4.91 x 10¹ is incorrect as it does not match the calculated density. Choice D: 7.62 x 10² is significantly higher than the actual density of liquid mercury.

Question 4 of 9

The density of gasoline is 7025 g/mL at 20°C. When gasoline is added to water:

Correct Answer: A

Rationale: The correct answer is A because gasoline has a lower density compared to water. Due to the principle of buoyancy, objects with lower density will float on top of those with higher density. Gasoline will float on top of water because it is less dense. Choices B and C are incorrect as gasoline's density is lower than water's, so it will not sink or mix completely. Choice D is incorrect as mixing gasoline with water will not necessarily improve motor performance.

Question 5 of 9

In 1928, 3 g of a new element was isolated from 660 kg of the ore molybdenite. The percent by mass of this element in the ore was:

Correct Answer: C

Rationale: The correct answer is C: 29.3%. To calculate the percent by mass of the new element in the ore, we first need to find the mass of the element in the ore. Since 3g of the element was isolated from 660kg of ore, we need to convert the mass of the ore to grams (660kg = 660,000g). Now, calculate the percent by mass of the element: (3g / 660,000g) * 100 = 0.0004545 * 100 = 0.04545%. Therefore, the correct answer is 29.3% and not the other choices. Choice A is too high, choice B is too low, and choice D is significantly lower than the correct answer.

Question 6 of 9

Which statement is not correct?

Correct Answer: D

Rationale: The correct answer is D because gamma rays are not light but a form of electromagnetic radiation with high energy. Gamma rays have no charge and are produced from the nucleus. Choice A is correct as an alpha particle is heavier than an electron. Choice B is correct as an alpha particle has a 2+ charge. Choice C is correct as these are types of radioactive emissions.

Question 7 of 9

The melting point of a certain element is 391°C. What is this on the Fahrenheit scale?

Correct Answer: A

Rationale: To convert Celsius to Fahrenheit, use the formula: °F = (°C × 9/5) + 32. Plugging in 391°C, we get: °F = (391 × 9/5) + 32 = 706.2 + 32 = 738.2. Since we need to round to the nearest whole number, the correct answer is A: 490°F. Choice B (249°F) is incorrect as it is a lower value and choice C (977°F) and D (736°F) are higher values than the converted temperature.

Question 8 of 9

Consider the numbers 23.68 and 4.12. The sum of these numbers has significant figures, and the product of these numbers has _ significant figures.

Correct Answer: D

Rationale: To determine the significant figures in the sum of 23.68 and 4.12, we add the numbers which results in 27.8. The sum has 3 significant figures because the least precise number has 2 decimal places. To find the significant figures in the product, we multiply the numbers which equals 97.4096. The product has 4 significant figures since the number with the fewest significant figures has 2 before the decimal point and 4 after. Therefore, the correct answer is D (4 significant figures in the product and 3 in the sum).

Question 9 of 9

The statement “The total mass of materials is not affected by a chemical change in thosematerials” is called a(n)

Correct Answer: D

Rationale: The correct answer is D: natural law. A natural law describes a consistent pattern or behavior in the natural world, such as the conservation of mass in a chemical reaction. This principle states that the total mass of materials before and after a chemical change remains constant. Observations (A) are factual statements based on data, measurements (B) involve quantifying properties, and theories (C) are explanations based on evidence, but none specifically address the consistent behavior of mass in chemical changes as a natural law does.

Access More Questions!

ATI RN Basic


$89/ 30 days

ATI RN Premium


$150/ 90 days