Questions 9

HESI A2

HESI A2 Test Bank

HESI A2 Chemistry Practice Questions Questions

Question 1 of 5

Which of these types of intermolecular force is weakest?

Correct Answer: B

Rationale: The correct answer is B, London dispersion force. London dispersion forces are the weakest type of intermolecular force among the options provided. These forces arise from temporary fluctuations in electron distribution within molecules, leading to temporary dipoles. London dispersion forces are present in all molecules and are generally weaker than dipole-dipole interactions, hydrogen bonding, and ionic bonding. Dipole-dipole interactions are stronger than London dispersion forces as they involve permanent dipoles in molecules. Hydrogen bonding is stronger than both London dispersion and dipole-dipole interactions as it is a special type of dipole-dipole interaction that occurs when hydrogen is bonded to highly electronegative atoms like oxygen or nitrogen. Ionic bonding is the strongest type of intermolecular force among the options, but it is not the correct answer for the weakest type of force.

Question 2 of 5

What distinguishes one allotrope from another?

Correct Answer: A

Rationale: Allotropes are different forms of the same element that exist in the same physical state but have different structures. The arrangement of atoms is what distinguishes one allotrope from another, determining their unique properties and characteristics. Gram atomic mass (Choice B) is a constant value for a specific element and does not change between different allotropes. Physical state (Choice C) refers to whether a substance is a solid, liquid, or gas, which can be the same for different allotropes of an element. Stability (Choice D) can vary between different allotropes, but it is not what always differentiates one allotrope from another. Therefore, the correct answer is the arrangement of atoms, as it is the key factor that varies across different allotropes.

Question 3 of 5

Which of these types of intermolecular force is weakest?

Correct Answer: B

Rationale: The correct answer is B, London dispersion force. London dispersion forces are the weakest type of intermolecular force among the options provided. These forces arise from temporary fluctuations in electron distribution within molecules, leading to temporary dipoles. London dispersion forces are present in all molecules and are generally weaker than dipole-dipole interactions, hydrogen bonding, and ionic bonding. Dipole-dipole interactions are stronger than London dispersion forces as they involve permanent dipoles in molecules. Hydrogen bonding is stronger than both London dispersion and dipole-dipole interactions as it is a special type of dipole-dipole interaction that occurs when hydrogen is bonded to highly electronegative atoms like oxygen or nitrogen. Ionic bonding is the strongest type of intermolecular force among the options, but it is not the correct answer for the weakest type of force.

Question 4 of 5

On the periodic table, families of elements with similar properties appear in the same _________.

Correct Answer: D

Rationale: Families of elements with similar properties appear in the same column on the periodic table. Columns are also known as groups, and elements within the same group have similar chemical and physical properties due to their identical number of valence electrons. Therefore, the correct answer is 'column.' Choice A, 'row,' is incorrect because rows on the periodic table are called periods, not families or groups of elements. Choice B, 'principal energy level,' is incorrect as it refers to the energy levels of electrons around the nucleus of an atom, not the arrangement of elements with similar properties on the periodic table. Choice C, 'period,' is incorrect as periods represent horizontal rows on the periodic table, where elements do not necessarily have similar properties compared to elements in the same column.

Question 5 of 5

Which statement is true of a saturated solution?

Correct Answer: C

Rationale: A saturated solution contains the maximum concentration of solute that can be dissolved in a specific amount of solvent at a particular temperature. Once a solution is saturated, adding more solute will not increase its concentration since the excess solute will not dissolve and will instead form a precipitate, indicating that the solution is at its maximum capacity. Choices A, B, and D are incorrect because a saturated solution has reached its limit in dissolving solute, so it cannot contain more solute than it can dissolve (choice A), less solute than it can dissolve (choice B), or a precipitate that lowers the concentration of the solute in the solvent (choice D).

Similar Questions

Join Our Community Today!

Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for HESI A2-HESI A2 and 3000+ practice questions to help you pass your HESI A2-HESI A2 exam.

Call to Action Image