HESI A2
HESI A2 Physics Practice Test Questions
Question 1 of 9
Which of the following materials has the lowest density?
Correct Answer: B
Rationale: Cork has the lowest density among the given options. Cork is a lightweight material derived from the bark of cork oak trees and is known for its low density, making it float on water. Water, aluminum, and steel have higher densities compared to cork. Water is denser than cork because it has a consistent density of 1 g/cm³. Aluminum and steel are metals with much higher densities due to their atomic structures, making them denser than cork.
Question 2 of 9
According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:
Correct Answer: B
Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.
Question 3 of 9
What is the kinetic energy of a 500-kg wagon moving at 10 m/s?
Correct Answer: C
Rationale: The formula for calculating kinetic energy is KE = 0.5 mass velocity². Given the mass of the wagon is 500 kg and the velocity is 10 m/s, we can substitute these values into the formula: KE = 0.5 500 kg (10 m/s)² = 0.5 500 kg 100 m²/s² = 25,000 J or 2.5 10â´ J. Therefore, the kinetic energy of the 500-kg wagon moving at 10 m/s is 2.5 10â´ J. Choice A (50 J) is incorrect because it is too low; Choice B (250 J) is incorrect as it does not match the correct calculation; Choice D (5.0 10^5 J) is incorrect as it is too high. The correct answer is C (2.5 10^4 J).
Question 4 of 9
An object has a constant velocity of 50 m/s and travels for 10 s. What is the acceleration of the object?
Correct Answer: A
Rationale: The acceleration of an object is defined as the rate of change of its velocity. When an object has a constant velocity, it means there is no change in its speed or direction. In this case, the object maintains a constant velocity of 50 m/s for 10 seconds, which implies that there is no change in velocity. Therefore, the acceleration of the object is 0 m/s² as there is no acceleration or deceleration happening. Choices B, C, and D are incorrect because acceleration is the change in velocity over time, and in this scenario of constant velocity, the acceleration is 0 m/s².
Question 5 of 9
If the force acting on an object is doubled, how does its acceleration change?
Correct Answer: C
Rationale: According to Newton's second law of motion, the acceleration of an object is directly proportional to the force acting on it. Therefore, if the force acting on an object is doubled, its acceleration will also double. This relationship is expressed by the equation F = ma, where F is the force, m is the mass of the object, and a is the acceleration. When the force (F) is doubled, the acceleration (a) will also double, assuming the mass remains constant. Choice A is incorrect because acceleration changes with a change in force. Choice B is incorrect because acceleration and force are directly proportional. Choice D is incorrect because increasing the force acting on an object does not eliminate its acceleration; instead, it results in an increase in acceleration, as per Newton's second law.
Question 6 of 9
Fluid dynamics is a subfield of fluid mechanics concerned with:
Correct Answer: B
Rationale: Fluid dynamics is the study of fluids in motion and their behavior under different conditions, including how they flow, mix, and interact with their surroundings. It focuses on the dynamic aspects of fluids rather than their static properties when at rest, which is the realm of fluid statics. Phase transitions of fluids between liquid, gas, and solid states are more related to thermodynamics than fluid dynamics. While engineering applications involve fluid dynamics, the field itself is more specialized in studying the movement and behavior of fluids.
Question 7 of 9
What is the mathematical expression for work (W)?
Correct Answer: B
Rationale: The correct formula for work (W) is given by the equation W = F x d, where F represents force and d represents the displacement in the direction of the force. Work is calculated by multiplying the force applied by the distance over which the force is applied. Choice A (W = F / d) is incorrect as work is not calculated by dividing force by distance. Choice C (W = d / F) is incorrect because work is not calculated by dividing distance by force. Choice D (W = F^2 x d) is incorrect as work is not calculated by squaring the force and then multiplying by distance.
Question 8 of 9
When analyzing a power plant, which of the following is NOT considered a part of the system?
Correct Answer: D
Rationale: In a power plant system, the components directly involved in the energy conversion process are considered part of the system. The fuel being burned provides the heat source, the working fluid transfers this heat energy, and the turbine converts it into mechanical energy to generate electricity. The surrounding air, while it may interact with the system, is not a component that directly participates in the energy conversion process within the power plant system. Therefore, the correct answer is D - The surrounding air. Choices A, B, and C are essential components of a power plant system as they play direct roles in the energy conversion process, unlike the surrounding air.
Question 9 of 9
When calculating an object's acceleration, what must you do?
Correct Answer: D
Rationale: When calculating an object's acceleration, you must divide the change in velocity by the change in time. Acceleration is defined as the rate of change of velocity with respect to time. By determining the ratio of the change in velocity to the change in time, you can ascertain how quickly the velocity of an object is changing, thereby finding its acceleration. Choice A is incorrect because acceleration is not calculated by dividing time by velocity. Choice B is incorrect as it describes multiplying velocity by time, which does not yield acceleration. Choice C is incorrect as finding the difference between time and velocity is not a method to calculate acceleration.