Which number represents the number of protons in an element?

Questions 70

HESI A2

HESI A2 Test Bank

Chemistry HESI A2 Quizlet Questions

Question 1 of 9

Which number represents the number of protons in an element?

Correct Answer: C

Rationale: The correct answer is C: Atomic number. The atomic number corresponds to the number of protons in an element. Protons are positively charged subatomic particles found in the nucleus of an atom. Each element has a unique atomic number, which defines its identity based on the number of protons it contains. Choice A, Atomic mass, is incorrect as it refers to the average mass of an atom of an element. Choice B, Mass number, represents the total number of protons and neutrons in an atom's nucleus. Choice D, Proton number, is not a commonly used term in chemistry to indicate the number of protons.

Question 2 of 9

Which of the following is the weakest intermolecular force?

Correct Answer: D

Rationale: Dispersion forces, also known as London dispersion forces, are the weakest intermolecular forces. They are temporary attractive forces that occur due to momentary shifts in electron distribution within molecules. While dipole interactions, hydrogen bonding, and Van der Waals forces are stronger intermolecular forces, dispersion forces are the weakest because they arise from short-lived fluctuations in electron density. Dipole interactions involve permanent dipoles in molecules, making them stronger than dispersion forces. Hydrogen bonding is stronger than dipole interactions and involves hydrogen atoms bonded to highly electronegative atoms. Van der Waals forces encompass dipole-dipole interactions and dispersion forces, making them stronger than dispersion forces alone.

Question 3 of 9

Which type of change occurs when no change is made to the chemical composition of a substance?

Correct Answer: B

Rationale: A physical change refers to alterations in the state of matter without modifying the chemical composition of the substance. Examples of physical changes include changes in state (solid, liquid, gas), shape, size, or phase. In a physical change, the substance may look different or behave differently, but its chemical structure remains the same. On the other hand, chemical changes involve the breaking and forming of chemical bonds, resulting in the creation of entirely new substances with different chemical properties. Nuclear changes involve alterations in the nucleus of an atom, such as radioactive decay. Mechanical changes refer to changes in the position or motion of an object caused by applied forces, like pushing, pulling, or twisting.

Question 4 of 9

If electrons are not shared equally in a covalent bond, the bond is what?

Correct Answer: A

Rationale: A polar covalent bond occurs when electrons are shared unequally between atoms. In this type of bond, one atom has a stronger pull on the shared electrons, leading to a partial positive and partial negative charge distribution within the molecule. Choice B, non-polar, is incorrect because in non-polar covalent bonds, electrons are shared equally between atoms. Choice C, ionic, is incorrect as ionic bonds involve a transfer of electrons rather than sharing. Choice D, hydrogen, is incorrect as it does not describe the nature of a covalent bond.

Question 5 of 9

What type of chemical reaction involves the combination of two elements to form a product?

Correct Answer: C

Rationale: A synthesis reaction involves the combination of two or more substances to form a single, more complex product. In the context of chemical reactions, it specifically refers to the combination of two elements to form a compound. Therefore, the correct answer is C. Decomposition reactions involve the breakdown of a single compound into simpler substances (opposite of synthesis). Combustion reactions involve a substance reacting with oxygen to produce heat and light, not the combination of elements. Double replacement reactions involve the exchange of ions between two compounds, leading to the formation of two new compounds, not the combination of two elements.

Question 6 of 9

What can stop the penetration of beta radiation particles?

Correct Answer: C

Rationale: Beta radiation particles are high-energy, fast-moving electrons or positrons. Aluminum foil is effective in stopping beta radiation due to its ability to absorb and block these particles. When beta particles interact with the aluminum foil, they lose energy and are absorbed, preventing their penetration. Plastic and glass are not as effective as aluminum foil in stopping beta radiation. While concrete provides some shielding against beta particles, aluminum foil is a more suitable material for this purpose as it offers better absorption and blocking capabilities.

Question 7 of 9

Which of the following can act as a catalyst in a chemical reaction?

Correct Answer: A

Rationale: Enzymes are biological catalysts that speed up chemical reactions without being consumed. They lower the activation energy required for the reaction to occur, facilitating and accelerating the process. Choice B, Light, is not a catalyst but can sometimes trigger reactions by providing energy. Choice C, Water, and choice D, Metal, are not catalysts but can participate in reactions as reactants.

Question 8 of 9

What are neutral particles called?

Correct Answer: A

Rationale: Neutral particles, which have no electric charge, are known as neutrons. Neutrons are found in the nucleus of an atom along with protons. Electrons carry a negative charge and orbit the nucleus. Cations are positively charged ions formed by losing electrons. Therefore, the correct answer is 'Neutrons' as they are the neutral particles in an atom, unlike protons, electrons, or cations.

Question 9 of 9

How does increasing the concentration of reactants affect a chemical reaction?

Correct Answer: B

Rationale: Increasing the concentration of reactants leads to more reactant particles being available, which, in turn, increases the likelihood of successful collisions between particles. This higher frequency of collisions results in a higher reaction rate. Therefore, option B, 'Increases the reaction rate,' is the correct answer. Choice A, 'Decreases the reaction rate,' is incorrect because higher reactant concentration usually speeds up the reaction. Choice C, 'Stops the reaction,' is incorrect as increasing concentration promotes more collisions, enhancing the reaction. Choice D, 'Has no effect,' is incorrect because changing reactant concentration directly impacts the reaction rate in most cases.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days