HESI A2
HESI A2 Physics Practice Test Questions
Question 1 of 5
When a fluid encounters a bluff body (e.g., a car), the flow can separate behind the object, creating a region of low pressure. This phenomenon is known as:
Correct Answer: B
Rationale: The correct answer is B: Boundary layer separation. Boundary layer separation occurs when the flow of fluid detaches from the surface of a bluff body, leading to a low-pressure region behind the object. This separation creates a wake region with reduced pressure. Choice A, Cavitation, refers to the formation of vapor bubbles in a fluid and is not relevant in this context. Choice C, Bernoulli effect per se, does not specifically describe the phenomenon of flow separation behind a bluff body. Choice D, Drag crisis, is not the term used to describe the creation of a low-pressure region due to flow separation.
Question 2 of 5
Enthalpy (H) is a thermodynamic property defined as the sum of a system's internal energy (U) and the product of its pressure (P) and volume (V). The relationship between these is:
Correct Answer: A
Rationale: Enthalpy (H) is defined as H = U + PV, where U represents internal energy, P is pressure, and V is volume. Enthalpy includes both the internal energy of a system and the energy required to create space for the system against an external pressure. Therefore, the correct relationship between enthalpy, internal energy, pressure, and volume is H = U + PV. Choice B is incorrect as subtracting PV would not account for the work done against pressure. Choice C is incorrect as dividing U by PV doesn't represent the definition of enthalpy. Choice D is incorrect as dividing PV by U is not the correct relationship based on the definition of enthalpy.
Question 3 of 5
The efficiency (η) of a heat engine is defined as the ratio of the net work done (Wnet) by the engine to the heat input (Qh) from the hot reservoir. The relationship is expressed as:
Correct Answer: A
Rationale: The correct formula for efficiency (η) of a heat engine is η = Wnet / Qh. Efficiency is defined as the ratio of the net work done by the engine (Wnet) to the heat input from the hot reservoir (Qh). This formula shows how effectively the engine converts heat into useful work, making choice A the correct answer. Choices B, C, and D present incorrect relationships between efficiency, net work done, and heat input, leading to their incorrectness.
Question 4 of 5
When analyzing a power plant, which of the following is NOT considered a part of the system?
Correct Answer: D
Rationale: In a power plant system, the components directly involved in the energy conversion process are considered part of the system. The fuel being burned provides the heat source, the working fluid transfers this heat energy, and the turbine converts it into mechanical energy to generate electricity. The surrounding air, while it may interact with the system, is not a component that directly participates in the energy conversion process within the power plant system. Therefore, the correct answer is D - The surrounding air. Choices A, B, and C are essential components of a power plant system as they play direct roles in the energy conversion process, unlike the surrounding air.
Question 5 of 5
In an electrically neutral atom, the number of:
Correct Answer: A
Rationale: In an electrically neutral atom, the number of electrons is equal to the number of protons. Electrons carry a negative charge, protons carry a positive charge, and neutrons are neutral. Since the atom is electrically neutral, the positive charge of the protons must balance the negative charge of the electrons, making the numbers of electrons and protons equal. Choice B is incorrect because protons are not equal to neutrons in an atom. Choice C is incorrect because neutrons are not always greater than protons, and choice D is incorrect because electrons are not always less than protons in an atom.