Questions 9

HESI A2

HESI A2 Test Bank

HESI A2 Chemistry Practice Questions Questions

Question 1 of 5

What is the net charge of an ionic compound?

Correct Answer: A

Rationale: The correct answer is A: 0. Ionic compounds have a net charge of 0 because they are formed by the combination of positively charged ions (cations) and negatively charged ions (anions) in a way that neutralizes their charges. This balanced combination results in an electrically neutral compound. Therefore, the net charge of an ionic compound is typically 0. Choices B, C, and D are incorrect because ionic compounds are designed to have a total neutral charge, with the positive charges balancing out the negative charges.

Question 2 of 5

To the nearest whole number, what is the mass of one mole of hydrogen iodide?

Correct Answer: C

Rationale: The molar mass of hydrogen iodide (HI) is the sum of the atomic masses of its constituent elements. Hydrogen (H) has a molar mass of approximately 1 g/mol, and iodine (I) has a molar mass of about 127 g/mol. Thus, the molar mass of hydrogen iodide (HI) is approximately 1 + 127 = 128 g/mol. Rounding to the nearest whole number, the molar mass of hydrogen iodide is 128 g/mol, which is closest to choice C. Choice A (2 g/mol) is too low and does not reflect the correct molar mass of hydrogen iodide. Choice B (58 g/mol) is significantly lower than the actual molar mass. Choice D (128 g/mol) matches the calculated molar mass but is not the nearest whole number as requested.

Question 3 of 5

How many moles of potassium bromide are in 25 mL of a 4 M KBr solution?

Correct Answer: B

Rationale: To find the moles of potassium bromide in 25 mL of a 4 M KBr solution, we first need to convert the volume from milliliters to liters. 25 mL is equal to 0.025 L. Then, we use the formula moles = molarity x volume in liters. Substituting the values, moles = 4 M x 0.025 L = 0.1 mol. Therefore, there are 0.1 moles of KBr in 25 mL of a 4 M solution. Choice A, 0.035 mol, is incorrect as it does not properly calculate the moles. Choice C, 0.18 mol, and choice D, 1.6 mol, are also incorrect as they are not the result of the correct calculation based on the given molarity and volume.

Question 4 of 5

Which statement is true of a saturated solution?

Correct Answer: C

Rationale: A saturated solution contains the maximum concentration of solute that can be dissolved in a specific amount of solvent at a particular temperature. Once a solution is saturated, adding more solute will not increase its concentration since the excess solute will not dissolve and will instead form a precipitate, indicating that the solution is at its maximum capacity. Choices A, B, and D are incorrect because a saturated solution has reached its limit in dissolving solute, so it cannot contain more solute than it can dissolve (choice A), less solute than it can dissolve (choice B), or a precipitate that lowers the concentration of the solute in the solvent (choice D).

Question 5 of 5

Cobalt-60 has a half-life of 5 years. If you start with 20 g of cobalt-60, how much is left after 10 years?

Correct Answer: C

Rationale: Cobalt-60's half-life of 5 years means that after 5 years, half of the initial amount remains. Therefore, after 10 years, a quarter (half of a half) of the initial amount will remain. Starting with 20 g, after 10 years, 5 g of cobalt-60 will be left. Choice A (15 g) is incorrect because it assumes a linear decrease, not considering the exponential decay characteristic of radioactive substances. Choice B (10 g) is incorrect as it overlooks that after 10 years, more decay has occurred. Choice D (2.5 g) is incorrect as it represents only an eighth of the initial amount after 10 years, not a quarter.

Similar Questions

Join Our Community Today!

Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for HESI A2-HESI A2 and 3000+ practice questions to help you pass your HESI A2-HESI A2 exam.

Call to Action Image