HESI A2
Chemistry HESI A2 Quizlet Questions
Question 1 of 5
What is matter that has a definite shape and volume?
Correct Answer: B
Rationale: Matter that has a definite shape and volume is referred to as a solid. Solids maintain their shape and volume under normal conditions, unlike liquids that have a definite volume but take the shape of their container, gases that have neither a definite shape nor volume, and plasma which is a state of matter with no definite shape or volume and consists of charged particles.
Question 2 of 5
Which type of change occurs when no change is made to the chemical composition of a substance?
Correct Answer: B
Rationale: A physical change refers to alterations in the state of matter without modifying the chemical composition of the substance. Examples of physical changes include changes in state (solid, liquid, gas), shape, size, or phase. In a physical change, the substance may look different or behave differently, but its chemical structure remains the same. On the other hand, chemical changes involve the breaking and forming of chemical bonds, resulting in the creation of entirely new substances with different chemical properties. Nuclear changes involve alterations in the nucleus of an atom, such as radioactive decay. Mechanical changes refer to changes in the position or motion of an object caused by applied forces, like pushing, pulling, or twisting.
Question 3 of 5
What is the simplest form of a substance that is represented by a letter or letters?
Correct Answer: C
Rationale: The correct answer is C, 'Element.' An element is the most basic form of a substance that cannot be broken down further by chemical reactions. Each element is represented by a unique symbol, typically consisting of one or two letters. Choice A, 'Compound,' is incorrect as compounds are formed by the combination of two or more elements. Choice B, 'Mixture,' is also incorrect as mixtures are composed of two or more substances physically combined. Choice D, 'Molecule,' refers to the smallest unit of a compound that retains the chemical properties of that compound, not the simplest form of a substance represented by a symbol.
Question 4 of 5
Which law states that matter can neither be created nor destroyed during a chemical reaction?
Correct Answer: B
Rationale: The correct answer is B, the Law of Conservation of Mass. This law, formulated by Antoine Lavoisier, states that matter cannot be created or destroyed in a chemical reaction. It is a fundamental principle in chemistry that explains the preservation of mass during chemical reactions, indicating that the total mass of the reactants is equal to the total mass of the products. The other choices are incorrect because: A: The Law of Conservation of Energy states that energy cannot be created or destroyed, not matter. C: The Law of Constant Composition refers to compounds having the same composition by mass regardless of their source or how they were prepared, not about the conservation of matter in reactions. D: The Law of Multiple Proportions describes the ratios in which elements combine to form compounds, not the conservation of mass.
Question 5 of 5
What is the process of breaking bonds and forming new bonds to create new chemical compounds?
Correct Answer: B
Rationale: A chemical reaction involves the breaking and forming of bonds to create new substances. During a chemical reaction, the original chemical bonds are broken, and new bonds are formed to produce one or more new substances with different properties from the reactants. This transformation is a fundamental concept in chemistry and distinguishes chemical reactions from physical, nuclear, or mechanical reactions. Choice A, 'Physical reaction,' does not involve the breaking and forming of chemical bonds but rather changes in physical state or appearance. Choice C, 'Nuclear reaction,' involves changes in the nuclei of atoms, not the breaking and forming of chemical bonds. Choice D, 'Mechanical reaction,' refers to reactions involving physical forces or movements, not the breaking and forming of chemical bonds as in a chemical reaction.