HESI A2
HESI A2 Chemistry Practice Test Questions
Question 1 of 5
What is defined as the distance between adjacent peaks or adjacent troughs on a wave?
Correct Answer: D
Rationale: Wavelength is correctly defined as the distance between adjacent peaks or adjacent troughs on a wave. It is a crucial characteristic of waves, influencing properties such as color in light waves and pitch in sound waves. By altering the wavelength, significant changes in the wave's perception and attributes can be observed. Choice A, Frequency, refers to the number of occurrences of a repeating event per unit of time and is not related to the distance between peaks or troughs. Choice B, Wavenumber, represents the spatial frequency of a wave in terms of cycles per unit distance, not the distance between adjacent peaks. Choice C, Wave oscillation, does not specifically define the distance between adjacent peaks or troughs but rather the movement of a wave back and forth.
Question 2 of 5
How are elements arranged in the periodic table?
Correct Answer: A
Rationale: In the periodic table, the elements are arranged in order of increasing atomic number. This organization is based on the number of protons in the nucleus of each element. It provides a systematic way to classify elements and predict their properties. Knowing the atomic number of an element helps determine its placement in the periodic table and its characteristics. Therefore, the correct answer is the order of increasing atomic number as it is fundamental to the structure and properties of the elements. Choices B, C, and D are incorrect. Alphabetical order does not reflect any underlying property of the elements, metallic properties vary across the table, and neutron content alone is not the basis for the arrangement in the periodic table.
Question 3 of 5
A molecule of water contains hydrogen and oxygen in a 1:8 ratio by mass. This is a statement of _____.
Correct Answer: D
Rationale: The statement that a molecule of water contains hydrogen and oxygen in a 1:8 ratio by mass is an example of the law of constant composition. This law states that all samples of a given chemical compound have the same elemental composition. In the case of water (H2O), no matter where you obtain a sample of water, it will always be composed of hydrogen and oxygen in a 1:8 ratio by mass. The law of multiple proportions deals with compounds that can be formed by the combination of elements in different ratios. The law of conservation of mass states that mass is neither created nor destroyed in a chemical reaction. The law of conservation of energy states that energy cannot be created or destroyed, only transferred or converted.
Question 4 of 5
Different isotopes of a particular element contain the same number of
Correct Answer: A
Rationale: Different isotopes of a particular element contain the same number of protons. Isotopes are defined by the number of neutrons they have, which can vary while the number of protons remains the same. This is because the number of protons in an atom determines its elemental identity. Choice B - Neutrons is incorrect because isotopes can have different numbers of neutrons. Choice C - Protons and neutrons is incorrect because the number of neutrons can vary in isotopes. Choice D - Protons, neutrons, and electrons is incorrect because electrons are not fixed and can vary in an atom, but the number of protons is what defines the element.
Question 5 of 5
What are the s block and p block elements collectively known as?
Correct Answer: C
Rationale: The s block and p block elements are collectively known as representative elements. These elements are part of the main group elements in the periodic table, excluding the transition elements. The s block elements are located in groups 1 and 2, while the p block elements are found in groups 13 to 18. These elements display a diverse range of chemical behaviors and properties, representing the variety of elements in the periodic table. Choice A, Transition elements, is incorrect because transition elements are the elements in groups 3 to 12, which are located between the s block and the p block elements. Choice B, Active elements, is not a specific term used to refer to the s and p block elements collectively. Choice D, Inactive elements, is incorrect as the s and p block elements are known for their reactivity and participation in a wide range of chemical reactions.