Questions 9

HESI A18

HESI A18 Test Bank

HESI A2 Chemistry Practice Test Questions

Question 1 of 5

What is a mathematical function that gives the amplitude of a wave as a function of position (and sometimes, as a function of time and/or electron spin)?

Correct Answer: D

Rationale: The correct answer is D, Wavefunction. The wavefunction is a mathematical function that gives the amplitude of a wave as a function of position (and sometimes, as a function of time and/or electron spin). It is commonly used in quantum mechanics to describe the behavior of particles, particularly electrons, in atomic and molecular systems. The wavefunction provides information about the probability of finding a particle in a particular state or position. Wavelength (Choice A), Frequency (Choice B), and Wavenumber (Choice C) are properties of waves, but they do not directly represent the mathematical function that describes the wave's behavior as the wavefunction does.

Question 2 of 5

Which law states that the pressure of an ideal gas is inversely proportional to its volume, given that the temperature and amount of gas remain constant?

Correct Answer: D

Rationale: Boyle's law describes the relationship between the pressure and volume of an ideal gas when the temperature and amount of gas are constant. According to Boyle's law, if the pressure of a gas increases, its volume decreases proportionally, and vice versa. This law is expressed by the equation P1V1 = P2V2, where P1 and V1 represent the initial pressure and volume, while P2 and V2 represent the final pressure and volume when the temperature and amount of gas remain unchanged. Understanding Boyle's law is essential in comprehending the behavior of gases under varying conditions and is fundamental in the study of thermodynamics. The other choices are incorrect: - Henry's law deals with the solubility of gases in liquids, not the relationship between pressure and volume of gases. - Dalton's law states that the total pressure exerted by a mixture of gases is equal to the sum of the partial pressures of individual gases, not the pressure-volume relationship. - Brown's law is a fabricated concept and does not exist in the context of gas laws.

Question 3 of 5

What is the spontaneous, random movement of small particles suspended in a liquid, caused by the unbalanced impacts of molecules on the particle?

Correct Answer: A

Rationale: Brownian motion is the correct choice as it specifically refers to the spontaneous, random movement of small particles suspended in a liquid, caused by the unbalanced impacts of molecules on the particle. This phenomenon was observed and documented by Robert Brown, leading to the discovery of the existence of molecules. Grey's kinesis and Boyle's wave are not scientifically recognized terms related to this concept.

Question 4 of 5

Which of the following lists four factors that affect rates of reaction?

Correct Answer: B

Rationale: The correct answer is B. The factors that influence rates of reaction are temperature, particle size, concentration, and the presence of a catalyst. Temperature affects the speed of molecules, particle size impacts the available surface area for reactions, concentration influences the collision frequency between reactant molecules, and catalysts accelerate reactions by providing an alternative pathway with lower activation energy. Choices A, C, and D are incorrect as they either include irrelevant factors that do not affect reaction rates (barometric pressure, container material, elevation, and volatility) or lack important factors that do influence reaction rates (like a catalyst).

Question 5 of 5

One factor that affects rates of reaction is concentration. Which of these statements about concentration is/are correct?

Correct Answer: A

Rationale: A higher concentration of reactants causes more effective collisions per unit time, leading to an increased reaction rate. This is because a higher concentration means there are more reactant molecules in a given volume, increasing the likelihood of collisions between them. With more collisions occurring, there is a greater chance of successful collisions leading to the formation of products, hence increasing the reaction rate. Choice B is incorrect as a lower concentration decreases the number of collisions, reducing the reaction rate. Choice C is incorrect as a higher concentration increases collision frequency, which typically results in a higher reaction rate. Choice D is incorrect as a higher concentration usually leads to more collisions, thus increasing the reaction rate.

Similar Questions

Join Our Community Today!

Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for HESI A2-HESI A18 and 3000+ practice questions to help you pass your HESI A2-HESI A18 exam.

Call to Action Image