HESI A2
HESI A2 Chemistry Questions
Question 1 of 4
What is 0 K equal to in °C?
Correct Answer: B
Rationale: 0 Kelvin, also known as absolute zero, is equal to -273°C. This is the point at which all molecular motion stops, making it the lowest possible temperature on the Kelvin scale. Choice A (-300°C) is incorrect as it is not the correct conversion of 0 K to °C. Choice C (-250°C) and Choice D (-200°C) are also incorrect as they do not correspond to the accurate conversion of 0 K to °C.
Question 2 of 4
What are the 3 types of radiation in nuclear chemistry?
Correct Answer: B
Rationale: The correct answer is B: Alpha, Beta, Gamma. In nuclear chemistry, the 3 types of radiation are alpha, beta, and gamma radiation. Alpha radiation consists of helium nuclei, beta radiation involves electrons or positrons, and gamma radiation is electromagnetic radiation of high frequency. Choice A is incorrect because 'Delta' is not a type of radiation in nuclear chemistry. Choice C is incorrect as it does not list alpha radiation. Choice D is incorrect as it lists the types in the wrong order and includes 'Delta' instead of alpha radiation.
Question 3 of 4
What are proteins made up of?
Correct Answer: B
Rationale: Proteins are made up of amino acids. Amino acids are the building blocks of proteins, essential for various biological processes in the body such as enzyme function, transport, and structural support. Fatty acids (Choice A) are components of lipids, not proteins. Nucleotides (Choice C) are the building blocks of nucleic acids like DNA and RNA, not proteins. Sugars (Choice D) are carbohydrates and are not the primary components of proteins.
Question 4 of 4
What is atomic mass?
Correct Answer: B
Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass. Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.