Questions 9

HESI A2

HESI A2 Test Bank

HESI A2 Chemistry Practice Questions Questions

Question 1 of 5

What distinguishes one allotrope from another?

Correct Answer: A

Rationale: Allotropes are different forms of the same element that exist in the same physical state but have different structures. The arrangement of atoms is what distinguishes one allotrope from another, determining their unique properties and characteristics. Gram atomic mass (Choice B) is a constant value for a specific element and does not change between different allotropes. Physical state (Choice C) refers to whether a substance is a solid, liquid, or gas, which can be the same for different allotropes of an element. Stability (Choice D) can vary between different allotropes, but it is not what always differentiates one allotrope from another. Therefore, the correct answer is the arrangement of atoms, as it is the key factor that varies across different allotropes.

Question 2 of 5

Which of these types of intermolecular force is weakest?

Correct Answer: B

Rationale: The correct answer is B, London dispersion force. London dispersion forces are the weakest type of intermolecular force among the options provided. These forces arise from temporary fluctuations in electron distribution within molecules, leading to temporary dipoles. London dispersion forces are present in all molecules and are generally weaker than dipole-dipole interactions, hydrogen bonding, and ionic bonding. Dipole-dipole interactions are stronger than London dispersion forces as they involve permanent dipoles in molecules. Hydrogen bonding is stronger than both London dispersion and dipole-dipole interactions as it is a special type of dipole-dipole interaction that occurs when hydrogen is bonded to highly electronegative atoms like oxygen or nitrogen. Ionic bonding is the strongest type of intermolecular force among the options, but it is not the correct answer for the weakest type of force.

Question 3 of 5

What is the correct formula for iron III oxide?

Correct Answer: C

Rationale: The correct formula for iron III oxide is Fe2O3. In this formula, Fe represents iron and O represents oxygen. Iron III oxide consists of two iron (Fe) ions combined with three oxygen (O) ions. Thus, the correct formula is Fe2O3. Choice A (IO) is incorrect as it does not represent the correct combination of iron and oxygen ions. Choice B (FeS) is incorrect as it represents iron sulfide, not iron III oxide. Choice D (OFe₂₃) is incorrect as it does not follow the correct chemical nomenclature for iron III oxide.

Question 4 of 5

Balance this equation: Fe + Cl2 → FeCl3

Correct Answer: B

Rationale: In the given equation, Fe combines with Cl to form FeCl3. To balance the equation, we need to have the same number of each element on both sides. Since Cl is represented as Cl2 in the equation, we need 3 Cl2 molecules to balance Fe, resulting in 2Fe + 3Cl2 → 2FeCl3. Choice A is incorrect because it only balances Fe but not Cl2. Choice C is incorrect as it balances Fe but not Cl2. Choice D is incorrect as it balances Fe but overbalances Cl2.

Question 5 of 5

Which one is not a hydrocarbon?

Correct Answer: B

Rationale: The correct answer is B, Pyridine (C5H5N). Pyridine is not a hydrocarbon because it contains nitrogen (N) in its molecular structure, in addition to carbon (C) and hydrogen (H) atoms. Hydrocarbons consist solely of carbon and hydrogen atoms. Methane (CH4), ethane (C2H6), and propane (C3H8) are all examples of hydrocarbons as they only contain carbon and hydrogen atoms, making them organic compounds known for their combustion properties.

Similar Questions

Join Our Community Today!

Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for HESI A2-HESI A2 and 3000+ practice questions to help you pass your HESI A2-HESI A2 exam.

Call to Action Image