HESI A2
HESI A2 Chemistry Questions
Question 1 of 5
What are the 3 types of radiation in nuclear chemistry?
Correct Answer: B
Rationale: The correct answer is B: Alpha, Beta, Gamma. In nuclear chemistry, the 3 types of radiation are alpha, beta, and gamma radiation. Alpha radiation consists of helium nuclei, beta radiation involves electrons or positrons, and gamma radiation is electromagnetic radiation of high frequency. Choice A is incorrect because 'Delta' is not a type of radiation in nuclear chemistry. Choice C is incorrect as it does not list alpha radiation. Choice D is incorrect as it lists the types in the wrong order and includes 'Delta' instead of alpha radiation.
Question 2 of 5
What is atomic mass?
Correct Answer: B
Rationale: Atomic mass, also known as atomic weight, is the sum of the number of protons and neutrons in an atom. It represents the average mass of an atom of an element, taking into account the different isotopes and their relative abundance. Neutrons contribute to the atomic mass alongside protons, while the number of neutrons alone is not the definition of atomic mass. Choice A is incorrect because it refers only to the number of protons, not the complete atomic mass. Choice C is incorrect as it focuses solely on the number of neutrons, excluding the contribution of protons. Choice D is incorrect as it mentions the 'average weight of an element,' which is related to atomic mass but does not encapsulate the specific definition of atomic mass as the sum of protons and neutrons.
Question 3 of 5
What is the energy required to remove the outermost electron from an atom called?
Correct Answer: D
Rationale: Ionization energy is the energy needed to remove the outermost electron from an atom, resulting in the formation of a positively charged ion. The higher the ionization energy, the more difficult it is to extract an electron. Electronegativity, however, measures an atom's ability to attract shared electrons in a chemical bond. Atomic radius refers to the distance from the nucleus to the outermost electron. Covalent bonding involves sharing electron pairs between atoms to create a stable bond. Therefore, the correct answer is ionization energy as it specifically relates to the energy needed to remove an electron from an atom.
Question 4 of 5
What color does phenolphthalein turn in the presence of an acid?
Correct Answer: C
Rationale: In the presence of an acid, phenolphthalein turns pink. Phenolphthalein is a pH indicator that is colorless in acidic solutions but turns pink in basic solutions. Therefore, when added to an acidic solution, phenolphthalein will exhibit a pink coloration. Choice A, 'Clear,' is incorrect because phenolphthalein does not remain colorless in the presence of an acid. Choice B, 'Blue,' is incorrect as phenolphthalein does not turn blue in the presence of an acid. Choice D, 'Red,' is incorrect as phenolphthalein does not exhibit a red color in acidic solutions.
Question 5 of 5
If fifty-six kilograms of a radioactive substance has a half-life of 12 days, how many days will it take the substance to decay naturally to only 7 kilograms?
Correct Answer: C
Rationale: To decay from 56 kg to 7 kg, the substance needs to go through 3 half-lives (56 kg · 2 · 2 · 2 = 7 kg). Since each half-life is 12 days, the total time required is 12 days per half-life x 3 half-lives = 36 days. Choice A is incorrect because it does not consider the concept of half-lives. Choice B is incorrect because it represents the duration of a single half-life, not the total time required for the decay. Choice D is incorrect as it does not account for the multiple half-lives needed for the substance to decay from 56 kg to 7 kg.