HESI A2
HESI A2 Physics Practice Test Questions
Question 1 of 9
The specific heat capacity of tin is 217 J/(g°C). Which of these materials would require about twice as much heat as tin to increase the temperature of a sample by 1°C?
Correct Answer: D
Rationale: The correct answer is D: Aluminum. The specific heat capacity of aluminum is 0.904 J/(g°C), which is approximately 4 times that of tin. For a material to require about twice as much heat as tin to increase the temperature by 1°C, it should have a specific heat capacity roughly double that of tin. Therefore, aluminum fits this criterion better than the other options. Gold has a much lower specific heat capacity than tin, so it would require less, not more, heat to increase the temperature by 1°C. Copper and Iron also have specific heat capacities lower than tin, making them incorrect choices for requiring twice as much heat as tin.
Question 2 of 9
Enthalpy (H) is a thermodynamic property defined as the sum of a system's internal energy (U) and the product of its pressure (P) and volume (V). The relationship between these is:
Correct Answer: A
Rationale: Enthalpy (H) is defined as H = U + PV, where U represents internal energy, P is pressure, and V is volume. Enthalpy includes both the internal energy of a system and the energy required to create space for the system against an external pressure. Therefore, the correct relationship between enthalpy, internal energy, pressure, and volume is H = U + PV. Choice B is incorrect as subtracting PV would not account for the work done against pressure. Choice C is incorrect as dividing U by PV doesn't represent the definition of enthalpy. Choice D is incorrect as dividing PV by U is not the correct relationship based on the definition of enthalpy.
Question 3 of 9
In a circuit with three same-size resistors wired in series to a 9-V power supply, producing 1 amp of current, what is the resistance of each resistor?
Correct Answer: C
Rationale: In a series circuit, the total resistance is the sum of the individual resistances. With a total voltage of 9 V and a current of 1 A, we can use Ohm's Law (V = I R) to find the total resistance: Total resistance = 9 V / 1 A = 9 ohms. Since the resistors are identical and wired in series, the total resistance is evenly divided among the three resistors: Resistance of each resistor = 9 ohms / 3 = 3 ohms. Thus, the resistance of each resistor is 3 ohms. Therefore, the correct answer is 3 ohms. Choice A, 9 ohms, is incorrect because this would be the total resistance of all three resistors combined in series. Choice B, 6 ohms, is incorrect as it does not account for the equal distribution of resistance in a series circuit. Choice D, 1 ohm, is incorrect as it is too low for resistors in series with a total resistance of 9 ohms.
Question 4 of 9
An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?
Correct Answer: B
Rationale: To find the magnitude of the resulting force between two charges, we use Coulomb's Law: F = k (|q1 q2|) / r² Where: F is the force k is Coulomb's constant (8.99 10â¹ N·m²/C²) q1 and q2 are the charges r is the distance between the charges Plugging in the values: F = (8.99 10â¹) (3 10â»â¶) (2 10â»â¶) / (0.3)² = 0.18 N. Therefore, the magnitude of the resulting force is 0.18 N.
Question 5 of 9
What does Coulomb's law relate to?
Correct Answer: A
Rationale: Coulomb's law is a fundamental principle in physics that deals with the electrostatic interaction between charged particles. It states that the force between two charged objects is directly proportional to the product of their charges and inversely proportional to the square of the distance between them. This law is crucial in understanding and predicting the behavior of electrically charged objects. Choices B, C, and D are incorrect because Coulomb's law specifically focuses on electrostatic interactions between charges, not rigid body motion, heat conduction, or universal gravitation.
Question 6 of 9
When a fluid encounters a bluff body (e.g., a car), the flow can separate behind the object, creating a region of low pressure. This phenomenon is known as:
Correct Answer: B
Rationale: The correct answer is B: Boundary layer separation. Boundary layer separation occurs when the flow of fluid detaches from the surface of a bluff body, leading to a low-pressure region behind the object. This separation creates a wake region with reduced pressure. Choice A, Cavitation, refers to the formation of vapor bubbles in a fluid and is not relevant in this context. Choice C, Bernoulli effect per se, does not specifically describe the phenomenon of flow separation behind a bluff body. Choice D, Drag crisis, is not the term used to describe the creation of a low-pressure region due to flow separation.
Question 7 of 9
When a dielectric material is inserted between the plates of a charged capacitor, what will happen to the capacitance?
Correct Answer: A
Rationale: When a dielectric material is inserted between the plates of a charged capacitor, the capacitance will increase. This is because the presence of a dielectric material reduces the electric field between the plates, allowing more charge to be stored for a given voltage, thus increasing the capacitance. Choice B is incorrect because adding a dielectric material increases capacitance. Choice C is incorrect because capacitance changes when a dielectric is added. Choice D is incorrect because the effect of a dielectric on capacitance is predictable.
Question 8 of 9
According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:
Correct Answer: B
Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.
Question 9 of 9
What is the kinetic energy of a 500-kg wagon moving at 10 m/s?
Correct Answer: C
Rationale: The formula for calculating kinetic energy is KE = 0.5 mass velocity². Given the mass of the wagon is 500 kg and the velocity is 10 m/s, we can substitute these values into the formula: KE = 0.5 500 kg (10 m/s)² = 0.5 500 kg 100 m²/s² = 25,000 J or 2.5 10â´ J. Therefore, the kinetic energy of the 500-kg wagon moving at 10 m/s is 2.5 10â´ J. Choice A (50 J) is incorrect because it is too low; Choice B (250 J) is incorrect as it does not match the correct calculation; Choice D (5.0 10^5 J) is incorrect as it is too high. The correct answer is C (2.5 10^4 J).