HESI A2
HESI A2 Physics Practice Test Questions
Question 1 of 9
Jack stands in front of a plane mirror. If he is 5 feet away from the mirror, how far away from Jack is his image?
Correct Answer: D
Rationale: When Jack stands in front of a plane mirror, his image appears the same distance behind the mirror as Jack is in front of it. Therefore, if Jack is 5 feet away from the mirror, his image will also appear 5 feet behind the mirror. The total distance from Jack to his image is the sum of these distances, which equals 10 feet. Choices A, B, and C are incorrect because the image distance is not half of the total distance but the same as the object's distance from the mirror.
Question 2 of 9
When a gas is compressed isothermally, we can say that:
Correct Answer: D
Rationale: When a gas is compressed isothermally, the surroundings perform work on the gas. In this process, since the temperature remains constant (isothermal), the internal energy of the gas does not change. Therefore, the correct answer is that the surroundings perform work on the gas, and its internal energy decreases. Choices A, B, and C are incorrect because they incorrectly describe the direction of work and the change in internal energy during an isothermal compression.
Question 3 of 9
Which of the following materials has the lowest density?
Correct Answer: B
Rationale: Cork has the lowest density among the given options. Cork is a lightweight material derived from the bark of cork oak trees and is known for its low density, making it float on water. Water, aluminum, and steel have higher densities compared to cork. Water is denser than cork because it has a consistent density of 1 g/cm³. Aluminum and steel are metals with much higher densities due to their atomic structures, making them denser than cork.
Question 4 of 9
When calculating an object's acceleration, what must you do?
Correct Answer: D
Rationale: When calculating an object's acceleration, you must divide the change in velocity by the change in time. Acceleration is defined as the rate of change of velocity with respect to time. By determining the ratio of the change in velocity to the change in time, you can ascertain how quickly the velocity of an object is changing, thereby finding its acceleration. Choice A is incorrect because acceleration is not calculated by dividing time by velocity. Choice B is incorrect as it describes multiplying velocity by time, which does not yield acceleration. Choice C is incorrect as finding the difference between time and velocity is not a method to calculate acceleration.
Question 5 of 9
A 110-volt appliance draws 0 amperes. How many watts of power does it require?
Correct Answer: A
Rationale: When a 110-volt appliance draws 0 amperes, it means that the power consumption is zero as well. The formula to calculate power is P = V x I, where P is power in watts, V is voltage in volts, and I is current in amperes. Since the current is 0 amperes, the power required by the appliance is also 0 watts. Therefore, the correct answer is 0 watts. Choice B, 108 watts, is incorrect because there is no current drawn. Choice C, 112 watts, and choice D, 220 watts, are incorrect as well since the appliance is not consuming any power when drawing 0 amperes.
Question 6 of 9
The Prandtl number (Pr) is a dimensionless property relating:
Correct Answer: A
Rationale: The Prandtl number (Pr) is a dimensionless number used to characterize fluid flow. It is the ratio of momentum diffusivity to thermal diffusivity. In simpler terms, it relates the ability of a fluid to conduct heat to its ability to conduct momentum. Therefore, the correct relationship is between viscosity and thermal diffusivity, making choice A the correct answer. Choices B, C, and D are incorrect because they do not represent the properties that the Prandtl number relates.
Question 7 of 9
What is the net force acting on the car?
Correct Answer: C
Rationale: To determine the net force acting on an object, we need to consider the sum of the forces acting in the same direction and subtract the forces acting in the opposite direction. In this scenario, there is a force of 4,200 N to the right and a force of 2,700 N to the left. By subtracting the leftward force from the rightward force (4,200 N - 2,700 N), we find that the net force acting on the car is 1,500 N to the right. Therefore, choice C, 1,500 N, is the correct answer. Choice A, 450 N, is too small as it does not account for the total forces involved. Choice B, 700 N, is also incorrect as it is not the result of the correct mathematical operation on the given forces. Choice D, 6,300 N, is too large and does not align with the calculation based on the forces provided.
Question 8 of 9
If the force acting on an object is doubled, how does its acceleration change?
Correct Answer: C
Rationale: According to Newton's second law of motion, the acceleration of an object is directly proportional to the force acting on it. Therefore, if the force acting on an object is doubled, its acceleration will also double. This relationship is expressed by the equation F = ma, where F is the force, m is the mass of the object, and a is the acceleration. When the force (F) is doubled, the acceleration (a) will also double, assuming the mass remains constant. Choice A is incorrect because acceleration changes with a change in force. Choice B is incorrect because acceleration and force are directly proportional. Choice D is incorrect because increasing the force acting on an object does not eliminate its acceleration; instead, it results in an increase in acceleration, as per Newton's second law.
Question 9 of 9
What is the kinetic energy of a 500-kg wagon moving at 10 m/s?
Correct Answer: C
Rationale: The formula for calculating kinetic energy is KE = 0.5 mass velocity². Given the mass of the wagon is 500 kg and the velocity is 10 m/s, we can substitute these values into the formula: KE = 0.5 500 kg (10 m/s)² = 0.5 500 kg 100 m²/s² = 25,000 J or 2.5 10â´ J. Therefore, the kinetic energy of the 500-kg wagon moving at 10 m/s is 2.5 10â´ J. Choice A (50 J) is incorrect because it is too low; Choice B (250 J) is incorrect as it does not match the correct calculation; Choice D (5.0 10^5 J) is incorrect as it is too high. The correct answer is C (2.5 10^4 J).