In physics, the relationship between acceleration and force is expressed in ___________.

Questions 44

HESI A2

HESI A2 Test Bank

HESI A2 Physics Questions

Question 1 of 5

In physics, the relationship between acceleration and force is expressed in ___________.

Correct Answer: B

Rationale: The relationship between acceleration and force is expressed in Newton's second law of motion. This law states that the acceleration of an object is directly proportional to the net force acting on the object and inversely proportional to the object's mass. Mathematically, this relationship is represented as F = ma, where F is the force, m is the mass of the object, and a is the acceleration. Choice A, Newton's first law of motion, also known as the law of inertia, states that an object at rest stays at rest and an object in motion stays in motion with the same speed and in the same direction unless acted upon by an external force. Choice C, Newton's third law of motion, states that for every action, there is an equal and opposite reaction, focusing on the interaction between two objects. Choice D is incorrect because the relationship between acceleration and force is indeed described by one of Newton's laws of motion, specifically the second law.

Question 2 of 5

A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?

Correct Answer: B

Rationale: The frequency of a wave is calculated using the formula: frequency = speed / wavelength. In this case, the speed of the wave is 12 m/s and the wavelength is 2 m. Therefore, the frequency is calculated as 12 m/s / 2 m = 6 Hz. Choice A (38.4 Hz), Choice C (4.6 Hz), and Choice D (3.75 Hz) are incorrect as they do not result from the correct calculation using the given values.

Question 3 of 5

Which vehicle has the greatest momentum?

Correct Answer: D

Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg 3 m/s = 27,000 kg·m/s B: 2,000 kg 24 m/s = 48,000 kg·m/s C: 1,500 kg 29 m/s = 43,500 kg·m/s D: 500 kg 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.

Question 4 of 5

How might the energy use of an appliance be expressed?

Correct Answer: C

Rationale: The energy use of an appliance can be expressed using the formula Energy = Power Time. In this formula, Energy represents the amount of electricity consumed by the appliance, Power indicates the rate at which the appliance uses electricity (measured in watts), and Time represents the duration for which the appliance is being used (measured in hours). By multiplying the power rating of the appliance by the time it is in use, one can calculate the total energy consumed. Option C is the correct choice because it accurately represents the relationship between power, time, and energy. Choices A, B, and D present incorrect representations of the relationship between energy, power, and time, making them wrong answers.

Question 5 of 5

If a force of 12 kg stretches a spring by 3 cm, how far will the spring stretch when a force of 30 kg is applied?

Correct Answer: B

Rationale: The extension of a spring is directly proportional to the force applied. In this case, the force increases from 12 kg to 30 kg, which is a 2.5 times increase. Therefore, the extension of the spring will also increase by 2.5 times. Given that the spring stretches 3 cm with a force of 12 kg, multiplying 3 cm by 2.5 gives us the extension of the spring when a force of 30 kg is applied, which equals 7.5 cm. Therefore, the correct answer is 7.5 cm. Choice A, 6 cm, is incorrect because it does not account for the proportional increase in force. Choice C, 9 cm, and Choice D, 10.5 cm, are incorrect as they overestimate the extension of the spring by not considering the direct proportionality between force and extension.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days

Similar Questions