HESI A2
Chemistry Hesi A2 Questions
Question 1 of 9
If 5 g of NaCl (1 mole of NaCl) is dissolved in enough water to make 500 L of solution, what is the molarity of the solution?
Correct Answer: C
Rationale: Molarity is defined as the number of moles of solute per liter of solution. In this case, 5 g of NaCl represents 1 mole of NaCl. Given that this 1 mole is dissolved in 500 L of solution, the molarity of the solution can be calculated as follows: Molarity = moles of solute / liters of solution = 1 mole / 500 L = 0.002 M. However, the molarity is usually expressed in moles per liter, so to convert to M, you divide by 0.085 L (which is 500 L in liters) to get 11.7 M. Choice A is incorrect because the molarity is not 1.0 M. Choice B is incorrect because the molarity is not 2.0 M. Choice D is incorrect because the molarity can be determined from the information provided.
Question 2 of 9
What is the charge of a gamma ray?
Correct Answer: D
Rationale: Gamma rays are a form of electromagnetic radiation with no charge. They are neutral particles that do not possess any electric charge. This characteristic allows them to be unaffected by electric or magnetic fields. Additionally, gamma rays travel at the speed of light in a vacuum. Choices A, B, and C are incorrect as gamma rays do not carry a charge of -1, +1, or +2; they are neutral entities.
Question 3 of 9
Identify the type of reaction shown: 8Fe + S → 8FeS
Correct Answer: C
Rationale: The reaction shown (8Fe + S → 8FeS) is a synthesis reaction. In a synthesis reaction, two or more substances combine to form a single compound. In this case, iron (Fe) and sulfur (S) combine to form iron sulfide (FeS). The key characteristic of a synthesis reaction is the formation of a single product from multiple reactants, which aligns with the given chemical equation. Choice A, single displacement, involves an element displacing another in a compound, which is not the case here. Choice B, double displacement, involves the exchange of ions between two compounds, which is also not happening in this reaction. Choice D, acid-base, refers to reactions between an acid and a base to form salt and water, which is not the case in the given equation.
Question 4 of 9
A chemist takes 100 mL of a 40 g NaCl solution and dilutes it to 1L. What is the concentration (molarity) of the new solution?
Correct Answer: C
Rationale: Initially, the chemist has 40 g of NaCl in 100 mL of solution. To find the initial molarity, we need to calculate the number of moles of NaCl using the molar mass of NaCl (58.44 g/mol). After dilution to 1 L, the molarity of the new solution can be calculated by dividing the moles of NaCl by the total volume in liters. Therefore, the concentration (molarity) of the new solution is 0.40 M NaCl. Choice A (0.04 M NaCl) is incorrect because it doesn't consider the correct molar concentration after dilution. Choice B (0.25 M NaCl) is incorrect as it also doesn't account for the correct molar concentration post-dilution. Choice D (2.5 M NaCl) is incorrect as it is too concentrated given the initial amount of NaCl and the dilution factor.
Question 5 of 9
Aluminum (Al) has 13 protons in its nucleus. What is the number of electrons in an Al3+ ion?
Correct Answer: C
Rationale: Aluminum (Al) has an atomic number of 13, which indicates it normally has 13 electrons to balance the 13 protons in its nucleus. When Al forms an Al3+ ion, it loses 3 electrons to achieve a stable electron configuration. Therefore, the Al3+ ion will have 13 - 3 = 10 electrons. Choice A (16) is incorrect as it doesn't take into account the charge of the Al3+ ion. Choice B (13) is incorrect because the Al3+ ion has lost electrons. Choice D (3) is incorrect as it doesn't reflect the total number of electrons lost by the Al atom to form the Al3+ ion.
Question 6 of 9
What are the products of combustion of a hydrocarbon in excess oxygen?
Correct Answer: A
Rationale: The correct answer is A: Carbon dioxide and water. During the combustion of a hydrocarbon in excess oxygen, the hydrocarbon reacts to produce carbon dioxide and water vapor as the final products. This reaction is known as complete combustion, where the hydrocarbon combines with oxygen to form carbon dioxide and water. Choices B, C, and D are incorrect because naphthalene is a specific hydrocarbon compound, chlorine and bromine are not typically formed during the combustion of hydrocarbons in excess oxygen, and carbonium ions are not the products of this reaction.
Question 7 of 9
On the periodic table, where are atoms with the largest atomic radius located?
Correct Answer: C
Rationale: Atoms with the largest atomic radius are located at the bottom of their group on the periodic table. This is because atomic radius increases down a group due to the addition of more energy levels or shells of electrons. As you move down a group, the outermost electrons are further away from the nucleus, leading to an increase in atomic radius. Choice A 'At the top of their group' is incorrect because atomic radius decreases going up within a group. Choice B 'In the middle of their group' is incorrect as the atomic radius generally increases as you go down a group, not in the middle. Choice D 'Along the right-hand side' is incorrect because atomic radius tends to decrease from left to right across a period on the periodic table due to increased nuclear charge and effective nuclear charge.
Question 8 of 9
A radioactive isotope has a half-life of 20 years. How many grams of a 6-gram sample will remain after 40 years?
Correct Answer: C
Rationale: The half-life of a radioactive isotope is the time it takes for half of the original sample to decay. After each half-life period, half of the initial sample remains. In this case, after the first 20 years, half of the 6-gram sample (3 grams) will remain. After another 20 years (total of 40 years), half of the remaining 3 grams will remain, which is 1.5 grams. Therefore, 3 grams will be left after 40 years. Choice A is incorrect as it doesn't consider the concept of half-life and incorrectly suggests an increase in the sample. Choice B is incorrect as it assumes no decay over time. Choice D is incorrect as it miscalculates the remaining amount after two half-life periods.
Question 9 of 9
What is the correct name of MgO?
Correct Answer: B
Rationale: The correct name of MgO is Magnesium oxide. Mg represents the chemical symbol for magnesium, and O represents the chemical symbol for oxygen. When these elements combine, they form magnesium oxide. Option A, Manganese oxide, is incorrect as it refers to a compound of manganese and oxygen, not magnesium. Option C, Magnesium oxate, is not a valid chemical compound name. Option D, Magnesium hydroxide, refers to a different compound consisting of magnesium, oxygen, and hydrogen.