Questions 9

HESI A2

HESI A2 Test Bank

HESI A2 Chemistry Questions

Question 1 of 5

How much concentrated HCl should be used to prepare 500 mL of a 0.100 M HCl solution?

Correct Answer: B

Rationale: To prepare a 0.100 M HCl solution with a volume of 500 mL, you can use the formula C1V1 = C2V2, where C1 is the concentration of the concentrated HCl solution, V1 is the volume of concentrated HCl solution used, C2 is the desired concentration (0.100 M), and V2 is the final volume (500 mL). Rearranging the formula to solve for V1, you get V1 = (C2V2) / C1. Plugging in the values (0.100 M)(500 mL) / C1 = 100 mL, which means 100 mL of concentrated HCl should be used to prepare 500 mL of a 0.100 M HCl solution. Therefore, the correct answer is 100 mL. Choice A (75 mL), Choice C (125 mL), and Choice D (150 mL) are incorrect as they do not match the calculated volume needed to prepare the desired concentration of HCl solution.

Question 2 of 5

Which compound contains a polar covalent bond?

Correct Answer: D

Rationale: The compound 'Hâ‚‚O' (water) contains a polar covalent bond. In a water molecule, the oxygen atom is more electronegative than the hydrogen atoms. As a result, the electrons in the O-H bonds are unevenly shared, leading to a partial negative charge on the oxygen atom and partial positive charges on the hydrogen atoms. This unequal sharing of electrons creates a polar covalent bond in water. Choices A, B, and C are incorrect because they represent individual elements, not compounds, and do not involve the concept of polar covalent bonds.

Question 3 of 5

When balanced, the reaction Fe + O₂ → FeO will be?

Correct Answer: C

Rationale: To balance the chemical equation Fe + O₂ → FeO, the coefficients needed are 2 for Fe and 1 for O. Therefore, the balanced equation becomes 2Fe + O₂ → 2FeO, which translates into 2Fe + 3O₂ → 2FeO. This corresponds to option C. Choice A has the incorrect number of oxygen molecules. Choice B has an incorrect number of Fe atoms on the product side. Choice D also has an incorrect number of Fe atoms on the product side.

Question 4 of 5

If fifty-six kilograms of a radioactive substance has a half-life of 12 days, how many days will it take the substance to decay naturally to only 7 kilograms?

Correct Answer: C

Rationale: To decay from 56 kg to 7 kg, the substance needs to go through 3 half-lives (56 kg · 2 · 2 · 2 = 7 kg). Since each half-life is 12 days, the total time required is 12 days per half-life x 3 half-lives = 36 days. Choice A is incorrect because it does not consider the concept of half-lives. Choice B is incorrect because it represents the duration of a single half-life, not the total time required for the decay. Choice D is incorrect as it does not account for the multiple half-lives needed for the substance to decay from 56 kg to 7 kg.

Question 5 of 5

What is the molarity of a solution containing 45 moles of NaCl in 4 liters?

Correct Answer: A

Rationale: To calculate the molarity of a solution, you use the formula: Molarity (M) = moles of solute / liters of solution. In this case, M = 45 moles / 4 L = 11.25 M. The correct answer is 0.11 M NaCl. Choice B is incorrect as it doesn't match the calculated value. Choice C is also incorrect as it is significantly higher than the correct molarity. Choice D is incorrect as it is excessively high compared to the calculated value.

Similar Questions

Join Our Community Today!

Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for HESI A2-HESI A2 and 3000+ practice questions to help you pass your HESI A2-HESI A2 exam.

Call to Action Image