How many electron pairs are shared to form a double covalent bond?

Questions 70

HESI A2

HESI A2 Test Bank

Chemistry HESI A2 Quizlet Questions

Question 1 of 9

How many electron pairs are shared to form a double covalent bond?

Correct Answer: B

Rationale: The correct answer is B. In a double covalent bond, two pairs of electrons are shared between two atoms. This sharing of two electron pairs results in a stronger bond compared to a single covalent bond where only one pair of electrons is shared. Choice A is incorrect because a single covalent bond involves the sharing of one pair of electrons. Choices C and D are incorrect as they do not represent the correct number of electron pairs shared in a double covalent bond.

Question 2 of 9

What type of intermolecular force is a dipole attraction?

Correct Answer: B

Rationale: A dipole attraction is considered a weak intermolecular force. It occurs between molecules with permanent dipoles, where the positive end of one molecule is attracted to the negative end of another molecule. While dipole-dipole interactions are stronger than dispersion forces, they are weaker than hydrogen bonding or ion-dipole interactions. Therefore, the correct answer is 'Weak.' Choices A, C, and D are incorrect because dipole attractions are not classified as strong, medium, or very strong intermolecular forces, but rather fall into the category of weak intermolecular forces.

Question 3 of 9

Which of the following can act as a catalyst in a chemical reaction?

Correct Answer: A

Rationale: Enzymes are biological catalysts that speed up chemical reactions without being consumed. They lower the activation energy required for the reaction to occur, facilitating and accelerating the process. Choice B, Light, is not a catalyst but can sometimes trigger reactions by providing energy. Choice C, Water, and choice D, Metal, are not catalysts but can participate in reactions as reactants.

Question 4 of 9

What does the sum of protons and neutrons in an element represent?

Correct Answer: B

Rationale: The sum of protons and neutrons in an element is known as the mass number. The mass number is an important concept in chemistry as it represents the total number of nucleons (protons and neutrons) in an atom's nucleus. It is different from the atomic number, which represents the number of protons in an atom. The atomic mass is the average mass of an element's isotopes, taking into account the abundance of each isotope. Neutron number, on the other hand, specifically refers to the number of neutrons in an atom's nucleus. Therefore, the correct answer is B, mass number.

Question 5 of 9

What can stop the penetration of beta radiation particles?

Correct Answer: C

Rationale: Beta radiation particles are high-energy, fast-moving electrons or positrons. Aluminum foil is effective in stopping beta radiation due to its ability to absorb and block these particles. When beta particles interact with the aluminum foil, they lose energy and are absorbed, preventing their penetration. Plastic and glass are not as effective as aluminum foil in stopping beta radiation. While concrete provides some shielding against beta particles, aluminum foil is a more suitable material for this purpose as it offers better absorption and blocking capabilities.

Question 6 of 9

What effect does increasing the surface area of a reactant have?

Correct Answer: C

Rationale: Increasing the surface area of a reactant leads to more particles being exposed to the reaction, which in turn increases the reaction rate. This is because a larger surface area provides more sites for collisions between reacting particles, resulting in a higher frequency of successful collisions and thus accelerating the reaction. Choice A, 'Decreases the reaction rate,' is incorrect because increasing surface area actually accelerates the reaction. Choice B, 'Has no effect,' is incorrect as increasing surface area does have a significant effect on the reaction rate. Choice D, 'Stops the reaction,' is incorrect as increasing surface area does not stop the reaction but rather enhances it.

Question 7 of 9

Which type of chemical bond is the strongest?

Correct Answer: C

Rationale: Covalent bonds, especially those formed between non-metals, are the strongest type of chemical bond. In covalent bonds, atoms share electrons, creating a strong bond that requires a significant amount of energy to break. Choice A, ionic bonds, are strong but generally weaker than covalent bonds as they involve the transfer of electrons rather than sharing. Choice B, hydrogen bonds, are relatively weak intermolecular forces, not true chemical bonds. Choice D, metallic bonds, are strong but typically not as strong as covalent bonds. Metallic bonds involve a 'sea of electrons' shared between metal atoms, providing strength but with less directional bonding compared to covalent bonds.

Question 8 of 9

What are neutral particles called?

Correct Answer: A

Rationale: Neutral particles, which have no electric charge, are known as neutrons. Neutrons are found in the nucleus of an atom along with protons. Electrons carry a negative charge and orbit the nucleus. Cations are positively charged ions formed by losing electrons. Therefore, the correct answer is 'Neutrons' as they are the neutral particles in an atom, unlike protons, electrons, or cations.

Question 9 of 9

What can stop the penetration of alpha particles?

Correct Answer: C

Rationale: Alpha particles can be stopped by a piece of paper due to their low penetration power. The paper acts as a shield, effectively blocking the alpha particles from passing through. In contrast, materials like aluminum foil, glass, and plastic are not as effective as a simple piece of paper in stopping alpha particles. Aluminum foil is more effective against beta particles, gamma rays, and x-rays due to its higher density. Glass and plastic also provide some protection against beta particles and gamma rays, but they are less effective than a piece of paper against alpha particles.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days