How do you determine the velocity of a wave?

Questions 44

HESI A2

HESI A2 Test Bank

HESI A2 Physics Questions

Question 1 of 5

How do you determine the velocity of a wave?

Correct Answer: A

Rationale: The velocity of a wave can be determined by multiplying the frequency of the wave by the wavelength. This relationship is given by the formula: velocity = frequency wavelength. By multiplying the frequency by the wavelength, you can calculate the speed at which the wave is traveling. This formula is derived from the basic wave equation v = f λ, where v represents velocity, f is frequency, and λ is wavelength. Therefore, to find the velocity of a wave, one must multiply its frequency by its wavelength. Choices B, C, and D are incorrect. Adding, subtracting, or dividing the frequency and wavelength does not yield the correct calculation for wave velocity. The correct formula for determining wave velocity is to multiply the frequency by the wavelength.

Question 2 of 5

When the heat of a reaction is negative, which statement is true?

Correct Answer: C

Rationale: When the heat of a reaction is negative, it indicates that the reaction releases energy in the form of heat. This means that the products have lower energy levels compared to the reactants. Lower energy levels are associated with greater stability in chemical systems. Therefore, when the heat of a reaction is negative, the products are more stable due to having less energy than the reactants. Choice A, stating that the products have less energy and are less stable, is incorrect as lower energy levels imply greater stability. Choice B, stating that the products have more energy and are more stable, is incorrect as lower energy levels lead to higher stability. Choice D, stating that the products have more energy and are less stable, is incorrect as lower energy levels are associated with higher stability.

Question 3 of 5

Longitudinal waves have vibrations that move ___________.

Correct Answer: C

Rationale: In longitudinal waves, the vibrations of particles occur in the same direction as the wave propagates. This means the particles move back and forth in the direction of the wave, creating compressions and rarefactions along the wave. Therefore, the correct choice is C, in the same direction as the wave. Choice A is incorrect because transverse waves, not longitudinal waves, have vibrations at right angles to the direction of wave propagation. Choice B is incorrect as it describes the motion in transverse waves. Choice D is incorrect as it is an inaccurate representation of how longitudinal waves propagate.

Question 4 of 5

Which of the following describes a vector quantity?

Correct Answer: A

Rationale: A vector quantity is characterized by both magnitude and direction. In the provided options, choice A, '5 miles per hour due southwest,' fits this definition as it includes both the magnitude (5 miles per hour) and the direction (southwest), making it a vector quantity. Choices B and C only provide the magnitude without indicating any direction, hence they do not represent vector quantities.

Question 5 of 5

Why are boats more buoyant in salt water than in fresh water?

Correct Answer: D

Rationale: Salt increases the density of water, making saltwater more buoyant than freshwater. The higher density of saltwater provides more lift to a boat, enabling it to float more easily compared to in freshwater. Choice A is incorrect because salt does not affect the mass of the boats. Choice B is incorrect as salt does not increase the volume of water. Choice C is incorrect since salt affects the density of water, not the boats themselves. Therefore, the correct answer is that salt increases the density of the water, resulting in boats being more buoyant in salt water than in fresh water.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days

Similar Questions