HESI A2
HESI Exams Quizlet Physics Questions
Question 1 of 5
Given the four wires described here, which would you expect to have the greatest resistance?
Correct Answer: D
Rationale: The wire with the greatest resistance is the one with the smallest diameter, as resistance is inversely proportional to cross-sectional area. Gauge 4 with a 5.19 mm diameter has the smallest diameter and, therefore, the greatest resistance. Choice A, B, and C have larger diameters compared to choice D, so they would have lower resistance values.
Question 2 of 5
A 1,000-kg car drives at 10 m/s around a circle with a radius of 50 m. What is the centripetal acceleration of the car?
Correct Answer: A
Rationale: Centripetal acceleration is calculated using the formula a = v² / r, where v = 10 m/s and r = 50 m. Substituting these values: a = (10 m/s)² / 50 m = 100 / 50 = 2 m/s². Therefore, the correct answer is 2 m/s². Choice B, 4 m/s², is incorrect because it is not the result of the correct calculation. Choice C, 5 m/s², is incorrect as it does not match the calculated centripetal acceleration. Choice D, 10 m/s², is incorrect as it does not reflect the correct calculation based on the given values.
Question 3 of 5
A 3-volt flashlight uses a bulb with 60-ohm resistance. What current flows through the flashlight?
Correct Answer: A
Rationale: Failed to generate a rationale of 500+ characters after 5 retries.
Question 4 of 5
Two balloons with charges of 5 μC each are placed 25 cm apart. What is the magnitude of the resulting repulsive force between them?
Correct Answer: B
Rationale: To find the repulsive force between the two charges, we use Coulomb's law: F = k(q1 * q2) / r^2. Here, k is the Coulomb constant (8.99 x 10^9 Nm^2/C^2), q1 and q2 are the charges (5 μC each), and r is the distance between the charges (25 cm = 0.25 m). Substituting these values into the formula: F = (8.99 x 10^9 Nm^2/C^2)(5 x 10^-6 C)(5 x 10^-6 C) / (0.25 m)^2. Calculating this gives F = 1.8 N. Therefore, the magnitude of the resulting repulsive force between the two balloons is 1.8 N. Choice A, C, and D are incorrect as they do not correctly calculate the force using Coulomb's law.
Question 5 of 5
Bernoulli's principle for an incompressible, inviscid fluid in steady flow states that the mechanical energy, consisting of:
Correct Answer: C
Rationale: Bernoulli's principle states that the sum of pressure energy (P), kinetic energy per unit volume (½Ïv²), and potential energy per unit volume remains constant along a streamline in an incompressible, inviscid fluid. This means the total mechanical energy of the fluid is conserved, making Choice C the correct answer. Choices A, B, and D are incorrect because Bernoulli's principle involves the conservation of the total mechanical energy, not just pressure, velocity, or density alone.