HESI A2
HESI A2 Physics Quizlet Questions
Question 1 of 5
For steady, incompressible flow through a pipe, the mass flow rate (á¹) is related to the fluid density (Ï), cross-sectional area (A), and average velocity (v) via the continuity equation:
Correct Answer: B
Rationale: The continuity equation for steady, incompressible flow states that the mass flow rate is the product of the fluid's density, velocity, and cross-sectional area. Hence, á¹ = ÏvA. Choice A is incorrect because the mass flow rate can be determined using the given formula. Choice C is incorrect as Bernoulli's principle does not directly relate to the mass flow rate calculation. Choice D is incorrect as the equation of state is not needed to calculate the mass flow rate in this scenario.
Question 2 of 5
An object with a charge of 4 μC is placed 50 cm from another object with a charge twice as great. What is the magnitude of the resulting repulsive force?
Correct Answer: D
Rationale: The force between two charges is calculated using Coulomb's Law, which states that the force is proportional to the product of the two charges and inversely proportional to the square of the distance between them. Given that one charge is twice as great as the other and the distance between them is 50 cm, we can calculate the repulsive force. The magnitude of the resulting repulsive force is 2.5 10^−3 N. Choice A is incorrect as it does not match the calculated value. Choice B is incorrect as it is significantly higher than the correct answer. Choice C is incorrect as it represents 10^−3 N, which is lower than the calculated value.
Question 3 of 5
Power (P) represents the rate of work done. Which formula accurately depicts power?
Correct Answer: D
Rationale: Power (P) is defined as the rate of work done over time. The correct formula for power is P = W/t, where W is the work done, and t is the time taken. Therefore, option D, P = F / t, correctly represents power as work divided by time. Option A, P = W / F, is incorrect as it represents work divided by force, not power. Option B, P = d / t, is incorrect as it represents distance divided by time, not power. Option C, P = W x t, is incorrect as it represents work multiplied by time, not power. It's important to understand the distinction between work, power, force, time, and other related concepts to solve physics problems accurately.
Question 4 of 5
A 780-watt refrigerator is powered by a 120-volt power source. What is the current being drawn?
Correct Answer: C
Rationale: To calculate the current being drawn by the refrigerator, you can use the formula: Current (I) = Power (P) / Voltage (V). Given that the power of the refrigerator is 780 watts and the voltage is 120 volts, you can plug these values into the formula to find the current: I = 780 watts / 120 volts = 6.5 amperes. Therefore, the current being drawn by the 780-watt refrigerator is 6.5 amperes. Choice A, 660 amperes, is incorrect as it is significantly higher than the correct answer. Choice B, 150 amperes, is also incorrect and too high. Choice D, 0.15 amperes, is incorrect as it is too low. The correct answer is 6.5 amperes.
Question 5 of 5
A 120-volt heat lamp draws 25 amps of current. What is the lamp's resistance?
Correct Answer: D
Rationale: To find the resistance of the lamp, we use Ohm's Law, which states that resistance (R) is equal to voltage (V) divided by current (I), expressed as: R = V / I. Given that the voltage (V) is 120 volts and the current (I) is 25 amps, we substitute these values into the formula: R = 120 V / 25 A = 4.8 ohms. Therefore, the resistance of the lamp is 4.8 ohms. Choice A, 96 ohms, is incorrect as it is not the result of the correct calculation. Choice B, 104 ohms, is incorrect as it does not match the calculated resistance. Choice C, 150 ohms, is incorrect as it is not the correct resistance value obtained through the calculation.
Similar Questions
Join Our Community Today!
Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for HESI A2-HESI A2 and 3000+ practice questions to help you pass your HESI A2-HESI A2 exam.
Subscribe for Unlimited Access