HESI A2
HESI A2 Physics Quizlet Questions
Question 1 of 9
A concave mirror with a focal length of 2 cm forms a real image of an object at an image distance of 6 cm. What is the object's distance from the mirror?
Correct Answer: B
Rationale: The mirror formula, 1/f = 1/do + 1/di, can be used to solve for the object distance. Given that the focal length (f) is 2 cm and the image distance (di) is 6 cm, we can substitute these values into the formula to find the object distance. Plugging in f = 2 cm and di = 6 cm into the formula gives us 1/2 = 1/do + 1/6. Solving for do, we get do = 6 cm. Therefore, the object's distance from the mirror is 6 cm. Choice A (3 cm), Choice C (12 cm), and Choice D (30 cm) are incorrect distances as the correct object distance is determined to be 6 cm.
Question 2 of 9
At which point on a roller coaster does the car have the greatest potential energy?
Correct Answer: B
Rationale: The correct answer is B, the highest peak. At the highest peak of the roller coaster, the car reaches its maximum height above the ground. This point represents the car's greatest potential energy because it has the highest potential to do work due to its elevated position. The potential energy is directly proportional to the height of an object, so the highest point on the roller coaster track corresponds to the car's greatest potential energy. Choices A, C, and D are incorrect because potential energy is highest at the peak due to its elevated position, not at the start of the ride, the lowest trough, or the end of the ride.
Question 3 of 9
As a car is traveling on the highway, its speed drops from 60 mph to 30 mph. What happens to its kinetic energy?
Correct Answer: A
Rationale: The correct answer is A. Kinetic energy is proportional to the square of the velocity. When the speed drops from 60 mph to 30 mph, the kinetic energy is halved. Choice B is incorrect because halving the speed results in halving the kinetic energy, not doubling it. Choice C is incorrect because quadrupling the kinetic energy would require increasing the speed fourfold, not halving it. Choice D is incorrect because dividing the energy by four would imply a different relationship between speed and kinetic energy, which is not the case.
Question 4 of 9
A spring has a spring constant of 20 N/m. How much force is needed to compress the spring from 40 cm to 30 cm?
Correct Answer: D
Rationale: The change in length of the spring is 40 cm - 30 cm = 10 cm = 0.10 m. The force required to compress or stretch a spring is given by Hooke's Law: F = k x, where F is the force, k is the spring constant (20 N/m in this case), and x is the change in length (0.10 m). Substituting the values into the formula: F = 20 N/m 0.10 m = 2 N. Therefore, the correct answer is 2 N. Choice A (200 N) is incorrect because it miscalculates the force. Choice B (80 N) is incorrect as it does not apply Hooke's Law correctly. Choice C (5 N) is incorrect as it underestimates the force required.
Question 5 of 9
Which object below has the same density?
Correct Answer: A
Rationale: Density is calculated by dividing the mass of an object by its volume. The density of object A is 6.5 g / 16.25 cm3 = 0.4 g/cm3. The density of object B is 80 g / 32 cm3 = 2.5 g/cm3. The density of object C is 48 g / 22 cm3 = 2.18 g/cm3. The density of object D is 100 g / 250 cm3 = 0.4 g/cm3. Objects A and D have the same density of 0.4 g/cm3. Therefore, the correct answer is A as it has the same density as object D, making them the only objects with a density of 0.4 g/cm3.
Question 6 of 9
The Reynolds number (Re) is a dimensionless quantity used to characterize:
Correct Answer: B
Rationale: The Reynolds number is a dimensionless quantity used to characterize the flow regime, specifically whether it is laminar (smooth) or turbulent (chaotic). It depends on the velocity of the fluid, its characteristic length (such as pipe diameter), and its viscosity. A low Reynolds number indicates laminar flow, while a high Reynolds number suggests turbulence. Choices A, C, and D are incorrect because the Reynolds number is not related to fluid density, surface tension effects, or buoyancy force magnitude.
Question 7 of 9
According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to what factor?
Correct Answer: C
Rationale: According to the Law of Universal Gravitation, the gravitational force between two objects is directly proportional to the product of their masses. The equation is: F = G (mâ‚ mâ‚‚) / r², where F is the gravitational force, G is the gravitational constant, mâ‚ and mâ‚‚ are the masses of the two objects, and r is the distance between them. Choice A is incorrect because the gravitational constant is a constant value. Choice B is incorrect because the distance between the objects affects the strength of the gravitational force inversely proportional to the square of the distance, not directly proportional. Choice D is incorrect as it represents the inverse square law, where the gravitational force decreases with the square of the distance between the objects.
Question 8 of 9
An object with a mass of 45 kg has momentum equal to 180 kgâ‹…m/s. What is the object's velocity?
Correct Answer: A
Rationale: The momentum of an object is calculated by multiplying its mass and velocity. Mathematically, momentum = mass x velocity. Given that the mass is 45 kg and the momentum is 180 kgâ‹…m/s, we can rearrange the formula to solve for velocity: velocity = momentum / mass. Plugging in the values, velocity = 180 kgâ‹…m/s / 45 kg = 4 m/s. Therefore, the object's velocity is 4 m/s. Choices B, C, and D are incorrect because they do not align with the correct calculation based on the given mass and momentum values.
Question 9 of 9
A common example of a shear-thinning (non-Newtonian) fluid is:
Correct Answer: B
Rationale: The correct answer is B: Ketchup. Shear-thinning fluids become less viscous under stress. Ketchup is an example of a shear-thinning fluid because its viscosity decreases when it is shaken or squeezed, allowing it to flow more easily. Choice A, Water, is a Newtonian fluid with a constant viscosity regardless of stress. Choice C, Air, is also a Newtonian fluid. Choice D, Alcohol, does not exhibit shear-thinning behavior; it typically has a constant viscosity as well.