HESI A2
HESI A2 Physics Quizlet Questions
Question 1 of 5
A 780-watt refrigerator is powered by a 120-volt power source. What is the current being drawn?
Correct Answer: C
Rationale: To calculate the current being drawn by the refrigerator, you can use the formula: Current (I) = Power (P) / Voltage (V). Given that the power of the refrigerator is 780 watts and the voltage is 120 volts, you can plug these values into the formula to find the current: I = 780 watts / 120 volts = 6.5 amperes. Therefore, the current being drawn by the 780-watt refrigerator is 6.5 amperes. Choice A, 660 amperes, is incorrect as it is significantly higher than the correct answer. Choice B, 150 amperes, is also incorrect and too high. Choice D, 0.15 amperes, is incorrect as it is too low. The correct answer is 6.5 amperes.
Question 2 of 5
As a car is traveling on the highway, its speed drops from 60 mph to 30 mph. What happens to its kinetic energy?
Correct Answer: A
Rationale: The correct answer is A. Kinetic energy is proportional to the square of the velocity. When the speed drops from 60 mph to 30 mph, the kinetic energy is halved. Choice B is incorrect because halving the speed results in halving the kinetic energy, not doubling it. Choice C is incorrect because quadrupling the kinetic energy would require increasing the speed fourfold, not halving it. Choice D is incorrect because dividing the energy by four would imply a different relationship between speed and kinetic energy, which is not the case.
Question 3 of 5
The specific heat capacity of water is about 2 J/g°C. How much energy would you need to heat 1 kilogram of water by 10°C?
Correct Answer: C
Rationale: The formula to calculate the energy required to heat a substance is Q = m c ΔT, where m is the mass, c is the specific heat capacity, and ΔT is the change in temperature. Given that 1 kilogram of water is equal to 1,000 grams, the mass (m) is 1,000 g, the specific heat capacity (c) of water is 4.2 J/g°C (not 2 J/g°C), and the change in temperature (ΔT) is 10°C. Substituting these values into the formula: Q = 1,000 4.2 10 = 42,000 J. Therefore, the correct energy required to heat 1 kilogram of water by 10°C is 42,000 J. Choices A, B, and D are incorrect as they do not consider the correct specific heat capacity of water or the conversion of mass to grams.
Question 4 of 5
If a wave has a frequency of 60 hertz, which of the following is true?
Correct Answer: C
Rationale: The frequency of a wave is the number of cycles it completes in one second. A wave with a frequency of 60 hertz completes 60 cycles per second. Therefore, choice C is correct. Choice A is incorrect because a frequency of 60 hertz means 60 cycles per second, not per minute. Choice B is incorrect as the frequency of the wave does not determine the distance from crest to crest. Choice D is also incorrect as the frequency does not relate to the distance from crest to trough.
Question 5 of 5
Which mathematical quantity is scalar?
Correct Answer: A
Rationale: Distance is a scalar quantity because it has only magnitude and no direction. It is simply the total length of the path travelled by an object. Scalars are quantities that are fully described by their magnitude alone, without any reference to direction. Velocity and acceleration are vector quantities as they have both magnitude and direction. Displacement is also a vector quantity as it is the change in position of an object and includes both magnitude and direction.