HESI A2
HESI A2 Physics Questions
Question 1 of 9
A 5-cm candle is placed 20 cm away from a concave mirror with a focal length of 10 cm. What is the image distance of the candle?
Correct Answer: C
Rationale: To find the image distance of the candle, we use the mirror formula: 1/f = 1/do + 1/di, where f is the focal length, do is the object distance, and di is the image distance. In this case, the focal length f = 10 cm and the object distance do = 20 cm. Substituting these values into the formula gives us 1/10 = 1/20 + 1/di. Solving for di, we get di = 60 cm. Therefore, the image distance of the candle is 60 cm. Choice A (20 cm) is incorrect because it represents the object distance, not the image distance. Choice B (40 cm) is incorrect as it does not consider the mirror formula calculation. Choice D (75 cm) is incorrect as it does not match the correct calculation based on the mirror formula.
Question 2 of 9
A wave in a rope travels at 12 m/s and has a wavelength of 2 m. What is the frequency?
Correct Answer: B
Rationale: The frequency of a wave is calculated using the formula: frequency = speed / wavelength. In this case, the speed of the wave is 12 m/s and the wavelength is 2 m. Therefore, the frequency is calculated as 12 m/s / 2 m = 6 Hz. Choice A (38.4 Hz), Choice C (4.6 Hz), and Choice D (3.75 Hz) are incorrect as they do not result from the correct calculation using the given values.
Question 3 of 9
A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?
Correct Answer: D
Rationale: Work done is calculated using the formula: Work = Force x Distance. In this case, the force applied is 15 N and the distance covered is 3 m. Thus, work done = 15 N x 3 m = 45 Nâ‹…m. Therefore, the correct answer is 45 Nâ‹…m. Choice A (5 W) is incorrect because work is measured in joules (J) or newton-meters (Nâ‹…m), not in watts (W). Choice B (5 Nâ‹…m) is incorrect as it miscalculates the work by not multiplying the force by the distance. Choice C (45 W) is incorrect because work is not measured in watts (W) but in newton-meters (Nâ‹…m).
Question 4 of 9
A closed system undergoes a cyclic process, returning to its initial state. What can be said about the net work done (Wnet) by the system over the entire cycle?
Correct Answer: C
Rationale: For a closed system undergoing a cyclic process and returning to its initial state, the net work done (Wnet) over the entire cycle can be positive, negative, or zero. This is because the work done is determined by the area enclosed by the cycle on a P-V diagram, and this area can be above, below, or intersecting the zero work axis, leading to positive, negative, or zero net work done. Choice A is incorrect because Wnet is not always positive; it depends on the specific path taken on the P-V diagram. Choice B is incorrect as Wnet is not always negative; it varies based on the enclosed area. Choice D is incorrect because Wnet is not necessarily equal to the total heat transferred into the system; it depends on the specifics of the cycle and is not a direct relationship.
Question 5 of 9
When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through which process?
Correct Answer: B
Rationale: When a hot cup of coffee is placed on a cold table, heat transfer primarily occurs through conduction. Conduction is the process of heat transfer through direct contact between objects at different temperatures. In this scenario, the heat from the hot coffee cup is transferred to the cold table through direct contact, making conduction the primary mode of heat transfer. Choice A (Radiation) is incorrect because radiation is the transfer of heat through electromagnetic waves, which is not the primary mode of heat transfer in this scenario. Choice C (Convection within the coffee) is incorrect because convection is the transfer of heat through the movement of fluids, which is not the primary mode of heat transfer in this scenario. Choice D (A combination of conduction and convection) is incorrect because while convection may play a minor role due to air currents around the cup, the primary mode of heat transfer in this scenario is conduction.
Question 6 of 9
For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:
Correct Answer: C
Rationale: In a compressible fluid, the speed of sound (c) depends on both the fluid's density (Ï) and Bulk modulus. Density affects the compressibility of the fluid, while Bulk modulus represents the fluid's resistance to compression and plays a crucial role in determining the speed of sound in a compressible medium. Viscosity and surface tension do not directly impact the speed of sound in a compressible fluid subjected to rapid pressure changes. Therefore, the correct answer is C.
Question 7 of 9
Which vehicle has the greatest momentum?
Correct Answer: D
Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg 3 m/s = 27,000 kg·m/s B: 2,000 kg 24 m/s = 48,000 kg·m/s C: 1,500 kg 29 m/s = 43,500 kg·m/s D: 500 kg 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.
Question 8 of 9
The buoyant force, F_b, experienced by an object submerged in a fluid is given by:
Correct Answer: B
Rationale: The correct formula for the buoyant force experienced by an object submerged in a fluid is given by Archimedes' principle, which states that the buoyant force is equal to the weight of the fluid displaced by the object. This is represented by the formula F_b = W_d, where W_d is the weight of the fluid displaced by the object. This force acts in the opposite direction to gravity and is responsible for objects floating or sinking in fluids. Choice A is incorrect because the buoyant force is not equal to the object's weight. Choice C is incorrect because the density of the fluid is not directly related to the buoyant force. Choice D is incorrect because the object's volume is not the determining factor for the buoyant force.
Question 9 of 9
Why are boats more buoyant in salt water than in fresh water?
Correct Answer: D
Rationale: Salt increases the density of water, making saltwater more buoyant than freshwater. The higher density of saltwater provides more lift to a boat, enabling it to float more easily compared to in freshwater. Choice A is incorrect because salt does not affect the mass of the boats. Choice B is incorrect as salt does not increase the volume of water. Choice C is incorrect since salt affects the density of water, not the boats themselves. Therefore, the correct answer is that salt increases the density of the water, resulting in boats being more buoyant in salt water than in fresh water.