A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?

Questions 42

HESI A2

HESI A2 Test Bank

HESI A2 Physics Practice Test Questions

Question 1 of 5

A 25-cm spring stretches to 28 cm when a force of 12 N is applied. What would its length be if that force were doubled?

Correct Answer: A

Rationale: When the 12 N force stretches the spring from 25 cm to 28 cm, it causes a length increase of 28 cm - 25 cm = 3 cm. Therefore, each newton of applied force causes an extension of 3 cm / 12 N = 0.25 cm/N. If the force is doubled to 24 N, the spring would extend by 24 N 0.25 cm/N = 6 cm more than its original length of 25 cm. Thus, the new length of the spring would be 25 cm + 6 cm = 31 cm. Choice A, 31 cm, is the correct answer as calculated. Choices B, C, and D are incorrect as they do not consider the relationship between force and extension in the spring, leading to incorrect calculations of the new length.

Question 2 of 5

In a circuit with three same-size resistors wired in series to a 9-V power supply, producing 1 amp of current, what is the resistance of each resistor?

Correct Answer: C

Rationale: In a series circuit, the total resistance is the sum of the individual resistances. With a total voltage of 9 V and a current of 1 A, we can use Ohm's Law (V = I R) to find the total resistance: Total resistance = 9 V / 1 A = 9 ohms. Since the resistors are identical and wired in series, the total resistance is evenly divided among the three resistors: Resistance of each resistor = 9 ohms / 3 = 3 ohms. Thus, the resistance of each resistor is 3 ohms. Therefore, the correct answer is 3 ohms. Choice A, 9 ohms, is incorrect because this would be the total resistance of all three resistors combined in series. Choice B, 6 ohms, is incorrect as it does not account for the equal distribution of resistance in a series circuit. Choice D, 1 ohm, is incorrect as it is too low for resistors in series with a total resistance of 9 ohms.

Question 3 of 5

An object with a charge of 3 μC is placed 30 cm from another object with a charge of 2 μC. What is the magnitude of the resulting force between the objects?

Correct Answer: B

Rationale: To find the magnitude of the resulting force between two charges, we use Coulomb's Law: F = k (|q1 q2|) / r² Where: F is the force k is Coulomb's constant (8.99 10⁹ N·m²/C²) q1 and q2 are the charges r is the distance between the charges Plugging in the values: F = (8.99 10⁹) (3 10⁻⁶) (2 10⁻⁶) / (0.3)² = 0.18 N. Therefore, the magnitude of the resulting force is 0.18 N.

Question 4 of 5

Fluids can be categorized based on their shear stress-strain rate relationship. An ideal fluid exhibits:

Correct Answer: A

Rationale: An ideal fluid, often referred to as an inviscid fluid, is a theoretical concept used in fluid mechanics to simplify calculations. It is characterized by having zero shear stress at any strain rate. In reality, such fluids do not exist, but they serve as a useful starting point for understanding fluid behavior in idealized situations. Choice B is incorrect because a linear relationship between shear stress and strain rate defines a Newtonian fluid, not an ideal fluid. Choice C is incorrect because a non-linear relationship between shear stress and strain rate characterizes Non-Newtonian fluids, not ideal fluids. Choice D is incorrect because the high dependence of viscosity on temperature is a characteristic seen in real fluids and does not define an ideal fluid.

Question 5 of 5

According to Bernoulli's principle, when the flow velocity (v) of an incompressible fluid increases in a constricted pipe, the pressure (P) will:

Correct Answer: B

Rationale: Bernoulli's principle states that in a constricted pipe with increasing flow velocity of an incompressible fluid, the pressure decreases. This is due to the conservation of energy, where the total energy of the fluid (sum of kinetic energy, potential energy, and pressure energy) remains constant along the flow path. As the fluid velocity increases, its kinetic energy increases at the expense of pressure energy, causing a decrease in pressure. Therefore, the correct answer is B. Choices A, C, and D are incorrect. The pressure changes in the system are primarily driven by the fluid velocity and the conservation of energy principle, not by the specific fluid type, which is a constant. The pressure is not constant but decreases with increasing flow velocity due to the energy transformation occurring in the system. Lastly, the pressure does not increase; it decreases as the fluid velocity rises.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days

Similar Questions