A 2,000-kg car travels at 15 m/s. For a 1,500-kg car traveling at 15 m/s to generate the same momentum, what would need to happen?

Questions 43

HESI A2

HESI A2 Test Bank

HESI Exams Quizlet Physics Questions

Question 1 of 5

A 2,000-kg car travels at 15 m/s. For a 1,500-kg car traveling at 15 m/s to generate the same momentum, what would need to happen?

Correct Answer: A

Rationale: Momentum is calculated as the product of mass and velocity. Since momentum is conserved in the absence of external forces, for the 1,500-kg car to generate the same momentum as the 2,000-kg car at 15 m/s, it would need to increase its velocity to compensate for the difference in mass. Accelerating to 20 m/s would achieve this without needing to change the mass of the car. Choice B is incorrect because adding mass is not necessary to match momentum in this scenario.

Question 2 of 5

A 5-kg block is suspended from a spring, causing the spring to stretch 10 cm from equilibrium. What is the spring constant for this spring?

Correct Answer: C

Rationale: The spring constant (k) can be calculated using Hooke's Law formula: F = -kx, where F is the force applied, k is the spring constant, and x is the displacement from equilibrium. In this case, the force applied is equal to the weight of the block, F = mg, where m = mass of the block = 5 kg and g = acceleration due to gravity = 9.8 m/s^2. The displacement x = 10 cm = 0.1 m. Substituting the values, we have: 5 kg * 9.8 m/s^2 = k * 0.1 m. Solving for k gives k = 5 * 9.8 / 0.1 = 49 N/m. Therefore, the spring constant for this spring is 49 N/cm. Choice A (4.9 N/cm) is incorrect because it is one decimal place lower than the correct answer. Choice B (9.8 N/cm) is incorrect as it does not account for the correct calculation based on the given information. Choice D (50 N/cm) is incorrect because it is slightly higher than the accurate value obtained through the calculations.

Question 3 of 5

A 1,000-kg car drives at 10 m/s around a circle with a radius of 50 m. What is the centripetal acceleration of the car?

Correct Answer: A

Rationale: Centripetal acceleration is calculated using the formula a = v² / r, where v = 10 m/s and r = 50 m. Substituting these values: a = (10 m/s)² / 50 m = 100 / 50 = 2 m/s². Therefore, the correct answer is 2 m/s². Choice B, 4 m/s², is incorrect because it is not the result of the correct calculation. Choice C, 5 m/s², is incorrect as it does not match the calculated centripetal acceleration. Choice D, 10 m/s², is incorrect as it does not reflect the correct calculation based on the given values.

Question 4 of 5

A 3-volt flashlight uses a bulb with 60-ohm resistance. What current flows through the flashlight?

Correct Answer: A

Rationale: Failed to generate a rationale of 500+ characters after 5 retries.

Question 5 of 5

Two balloons with charges of 5 μC each are placed 25 cm apart. What is the magnitude of the resulting repulsive force between them?

Correct Answer: B

Rationale: To find the repulsive force between the two charges, we use Coulomb's law: F = k(q1 * q2) / r^2. Here, k is the Coulomb constant (8.99 x 10^9 Nm^2/C^2), q1 and q2 are the charges (5 μC each), and r is the distance between the charges (25 cm = 0.25 m). Substituting these values into the formula: F = (8.99 x 10^9 Nm^2/C^2)(5 x 10^-6 C)(5 x 10^-6 C) / (0.25 m)^2. Calculating this gives F = 1.8 N. Therefore, the magnitude of the resulting repulsive force between the two balloons is 1.8 N. Choice A, C, and D are incorrect as they do not correctly calculate the force using Coulomb's law.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days

Similar Questions