A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?

Questions 44

HESI A2

HESI A2 Test Bank

HESI A2 Physics Questions

Question 1 of 9

A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?

Correct Answer: D

Rationale: Impulse is the change in momentum of an object. The initial momentum is calculated as 10 kg 5 m/s = 50 kgâ‹…m/s, and the final momentum is 10 kg 15 m/s = 150 kgâ‹…m/s. The change in momentum (impulse) is 150 kgâ‹…m/s - 50 kgâ‹…m/s = 100 kgâ‹…m/s. Therefore, the impulse applied to the object is 100 kgâ‹…m/s. Choices A, B, and C are incorrect because they do not reflect the correct calculation of the impulse based on the change in momentum of the object.

Question 2 of 9

Surface tension, γ, is a property of fluids arising from:

Correct Answer: A

Rationale: Surface tension, represented by symbol γ, is caused by the cohesive forces between molecules in a liquid. These intermolecular forces, such as Van der Waals forces, hydrogen bonding, and dipole-dipole interactions, create a 'skin' at the surface of the liquid, giving rise to the property of surface tension. Gravitational attraction, viscous dissipation, and pressure differentials within the fluid do not directly contribute to surface tension. Therefore, the correct answer is A.

Question 3 of 9

A 110-volt hair dryer delivers 1,525 watts of power. How many amperes does it draw?

Correct Answer: D

Rationale: To determine the amperes drawn by the hair dryer, we use the formula: Amperes = Watts / Volts. The hair dryer operates at 1,525 watts with 110 volts. Dividing 1,525 watts by 110 volts yields 13.9 amperes. Therefore, the correct answer is 13.9 amperes. Choices A, B, and C are incorrect because they do not result from the correct calculation using the formula.

Question 4 of 9

A 10-kg object moving at 5 m/s has an impulse acted on it causing the velocity to change to 15 m/s. What was the impulse that was applied to the object?

Correct Answer: D

Rationale: Impulse is the change in momentum of an object. The initial momentum is calculated as 10 kg 5 m/s = 50 kgâ‹…m/s, and the final momentum is 10 kg 15 m/s = 150 kgâ‹…m/s. The change in momentum (impulse) is 150 kgâ‹…m/s - 50 kgâ‹…m/s = 100 kgâ‹…m/s. Therefore, the impulse applied to the object is 100 kgâ‹…m/s. Choices A, B, and C are incorrect because they do not reflect the correct calculation of the impulse based on the change in momentum of the object.

Question 5 of 9

For a compressible fluid subjected to rapid pressure changes, sound wave propagation becomes important. The speed of sound (c) depends on the fluid's:

Correct Answer: C

Rationale: In a compressible fluid, the speed of sound (c) depends on both the fluid's density (ρ) and Bulk modulus. Density affects the compressibility of the fluid, while Bulk modulus represents the fluid's resistance to compression and plays a crucial role in determining the speed of sound in a compressible medium. Viscosity and surface tension do not directly impact the speed of sound in a compressible fluid subjected to rapid pressure changes. Therefore, the correct answer is C.

Question 6 of 9

A box is moved by a 15 N force over a distance of 3 m. What is the amount of work that has been done?

Correct Answer: D

Rationale: Work done is calculated using the formula: Work = Force x Distance. In this case, the force applied is 15 N and the distance covered is 3 m. Thus, work done = 15 N x 3 m = 45 Nâ‹…m. Therefore, the correct answer is 45 Nâ‹…m. Choice A (5 W) is incorrect because work is measured in joules (J) or newton-meters (Nâ‹…m), not in watts (W). Choice B (5 Nâ‹…m) is incorrect as it miscalculates the work by not multiplying the force by the distance. Choice C (45 W) is incorrect because work is not measured in watts (W) but in newton-meters (Nâ‹…m).

Question 7 of 9

Psychrometrics is a branch of thermodynamics that deals with the properties of:

Correct Answer: C

Rationale: Psychrometrics is the study of the physical and thermodynamic properties of gas-vapor mixtures, especially mixtures of moist air and water vapor. This branch of thermodynamics focuses on the relationships between temperature, pressure, humidity, and other properties of these mixtures. Choice A, ideal gases, is incorrect because psychrometrics specifically deals with gas-vapor mixtures, not ideal gases. Choice B, magnetic materials, and Choice D, nuclear reactions, are unrelated to psychrometrics and thermodynamics, making them incorrect. Understanding psychrometrics is crucial in fields like heating, ventilation, air conditioning, and refrigeration (HVAC&R) to design systems that effectively control air quality, comfort, and temperature.

Question 8 of 9

How might the energy use of an appliance be expressed?

Correct Answer: C

Rationale: The energy use of an appliance can be expressed using the formula Energy = Power Time. In this formula, Energy represents the amount of electricity consumed by the appliance, Power indicates the rate at which the appliance uses electricity (measured in watts), and Time represents the duration for which the appliance is being used (measured in hours). By multiplying the power rating of the appliance by the time it is in use, one can calculate the total energy consumed. Option C is the correct choice because it accurately represents the relationship between power, time, and energy. Choices A, B, and D present incorrect representations of the relationship between energy, power, and time, making them wrong answers.

Question 9 of 9

Which vehicle has the greatest momentum?

Correct Answer: D

Rationale: The momentum of an object is calculated by multiplying its mass by its velocity. The momentum formula is p = m v, where p is momentum, m is mass, and v is velocity. Comparing the momentum of each vehicle: A: 9,000 kg 3 m/s = 27,000 kg·m/s B: 2,000 kg 24 m/s = 48,000 kg·m/s C: 1,500 kg 29 m/s = 43,500 kg·m/s D: 500 kg 89 m/s = 44,500 kg·m/s. Therefore, the glider (500-kg) traveling at 89 m/s has the greatest momentum of 44,500 kg·m/s, making it the correct choice. Options A, B, and C have lower momentum values compared to option D, proving that the 500-kg glider traveling at 89 m/s has the highest momentum among the given vehicles.

Access More Questions!

HESI A2 Basic


$99/ 30 days

HESI A2 Premium


$150/ 90 days