While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?

Questions 39

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS Practice Math Test Questions

Question 1 of 5

While at the local ice skating rink, Cora went around the rink 27 times in total. She slipped and fell 20 of the 27 times she skated around the rink. What approximate percentage of the times around the rink did Cora not slip and fall?

Correct Answer: C

Rationale: To find the approximate percentage of the times Cora did not slip and fall, subtract the times she fell (20) from the total times around the rink (27), which gives 7. Then, divide the number of times she did not slip and fall (7) by the total times around the rink (27) and multiply by 100 to get the percentage. So, 7 divided by 27 equals 0.259, which rounds to approximately 26%. Therefore, the correct answer is 26%. Choice A (37%) is incorrect because it does not reflect the calculation based on the given information. Choice B (74%) is incorrect as it is not the result of the correct calculation. Choice D (15%) is incorrect as it does not match the calculated percentage based on the scenario provided.

Question 2 of 5

A gift box has a length of 14 inches, a height of 8 inches, and a width of 6 inches. How many square inches of wrapping paper are needed to wrap the box?

Correct Answer: C

Rationale: To find the surface area of a rectangular prism, you use the formula SA = 2lw + 2wh + 2hl, where l is the length, w is the width, and h is the height. Substituting the given dimensions, the calculation would be SA = 2(14)(6) + 2(6)(8) + 2(8)(14) = 168 + 96 + 224 = 488 square inches. Therefore, 488 square inches of wrapping paper are needed to wrap the box. Choice A (56), Choice B (244), and Choice D (672) are incorrect because they do not represent the correct surface area calculation for the given box dimensions.

Question 3 of 5

Simplify the following expression: (2/7) · (5/6)

Correct Answer: D

Rationale: To divide fractions, you multiply the first fraction by the reciprocal of the second fraction. In this case, (2/7) · (5/6) becomes (2/7) (6/5) = 12/35. Therefore, the correct answer is 12/35. Choice A (2/5), choice B (35/15), and choice C (5/21) are incorrect because they do not correctly simplify the given expression.

Question 4 of 5

Chan receives a bonus from his job. He pays 30% in taxes, donates 30% to charity, and uses another 25% to pay off an old debt. He has $600 remaining. What was the total amount of Chan's bonus?

Correct Answer: D

Rationale: Chan has used 30% + 30% + 25% = 85% of his bonus, which leaves 15% remaining. Since 15% of his bonus is $600, you can find the total bonus amount by dividing $600 by 15% (or multiplying by 100/15), which equals $4,000. Therefore, the correct answer is $4,000. The other choices are incorrect because they do not accurately represent the total remaining amount after the specified deductions.

Question 5 of 5

A patient requires a 30% decrease in their medication dosage. Their current dosage is 340 mg. What will their dosage be after the decrease?

Correct Answer: B

Rationale: To calculate a 30% decrease of 340 mg, multiply 340 by 0.30 to get 102. Subtracting 102 from 340 gives a new dosage of 238 mg. Choice A (70 mg) is incorrect as it represents a 80% decrease, not 30%. Choice C (270 mg) is incorrect as it does not reflect a decrease but rather the original dosage. Choice D (340 mg) is incorrect as it is the original dosage and not reduced by 30%.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions