ATI TEAS 7
TEAS 7 science study guide free Questions
Question 1 of 5
Which term describes the resistance of a substance to being hammered into different shapes?
Correct Answer: C
Rationale: Malleability is the property that allows a substance to be hammered or rolled into thin sheets without breaking. It is the opposite of brittleness. Ductility refers to the ability of a material to be drawn into thin wires, not hammered into shapes. Viscosity is the measure of a fluid's resistance to flow, indicating how thick or sticky it is, not related to shaping by hammering. Conductivity refers to the ability of a material to conduct electricity or heat, not resistance to being hammered into different shapes.
Question 2 of 5
Which phenomenon describes the separation of light into its component colors when passing through a prism?
Correct Answer: C
Rationale: Dispersion is the phenomenon that describes the separation of light into its component colors when passing through a prism. When white light enters a prism, it is refracted at different angles depending on its wavelength, causing the colors to spread out. Refraction is the bending of light as it passes from one medium to another, not the separation of colors. Diffraction is the bending of light around obstacles, not the separation of colors. Reflection is the bouncing back of light rays from a surface, not the separation of colors. In the context of a prism, dispersion plays a key role in the creation of a spectrum of colors by separating the different wavelengths present in white light.
Question 3 of 5
What are the key differences between cytokinesis in plant and animal cells?
Correct Answer: B
Rationale: Rationale: A) Animal cells utilize an actomyosin ring for cleavage furrow formation, while plant cells lack this mechanism. - This statement is true. Animal cells use an actomyosin ring to form a cleavage furrow during cytokinesis, while plant cells do not have this mechanism. Instead, plant cells form a cell plate. B) Plant cells rely on the assembly of a cell plate in the center of the dividing cell, ultimately separating the cytoplasm. - This statement is correct. Plant cells form a cell plate in the middle of the dividing cell during cytokinesis. The cell plate eventually develops into a new cell wall that separates the two daughter cells. C) Cytokinesis in both plant and animal cells is driven by the expansion of the endoplasmic reticulum. - This
Question 4 of 5
In the electron cloud model, electrons occupy specific energy levels around the nucleus with varying probabilities. This model depicts electrons existing in distinct energy levels, not fixed orbits, with probabilities of finding them in specific regions.
Correct Answer: C
Rationale: The electron cloud model describes electrons existing in distinct energy levels, not fixed orbits. Option C correctly describes the electron configuration of an atom with 2s orbitals containing 2 electrons and 6 electrons in the 2p orbitals. This configuration aligns with the electron cloud model where electrons are found in specific energy levels with varying probabilities. Options A, B, and D do not accurately represent the electron cloud model.
Question 5 of 5
What is the main function of valence electrons in chemical bonding?
Correct Answer: B
Rationale: Valence electrons are the electrons in the outermost energy level of an atom. These electrons are involved in forming bonds with other atoms, which is crucial for chemical bonding. By participating in bonding, valence electrons determine an atom's ability to form compounds and engage in chemical reactions. Therefore, the primary function of valence electrons is to facilitate the formation of bonds between atoms, making option B the correct answer. Choices A, C, and D are incorrect because valence electrons primarily influence chemical bonding by participating in the formation of bonds between atoms, rather than holding the nucleus together, determining physical properties, or having no role in chemical reactions.