ATI TEAS 7
TEAS 7 science study guide free Questions
Question 1 of 5
Which statement is true regarding aromatic compounds?
Correct Answer: A
Rationale: Aromatic compounds contain a ring structure with alternating single and double bonds, known as a benzene ring. This alternating pattern of bonds gives aromatic compounds their stability and unique properties. Due to this resonance, aromatic compounds are less reactive towards addition reactions. Water does not easily break down aromatic compounds due to their stability from the delocalized electrons in the ring structure. Therefore, the correct statement is that aromatic compounds contain a ring structure with alternating single and double bonds, providing them with stability and unique properties. Choices B, C, and D are incorrect. Aromatic compounds do not readily undergo addition reactions (B), are not easily broken down by water (C), and do contain pi (π) bonds due to the presence of the alternating single and double bonds in the ring structure (D).
Question 2 of 5
Which phenomenon describes the bending of light as it travels from one medium to another with differing densities?
Correct Answer: B
Rationale: Refraction is the phenomenon that describes the bending of light as it travels from one medium to another with differing densities. This bending occurs due to the change in speed of light as it moves from one medium to another, causing the light rays to change direction. Reflection refers to the bouncing back of light when it hits a surface, diffraction is the bending of light around obstacles, and dispersion is the separation of light into its different colors. Therefore, in the context of light moving through different media, refraction accurately describes the observed bending phenomenon.
Question 3 of 5
According to the wave theory of light, the bright fringes observed in a double-slit experiment correspond to:
Correct Answer: A
Rationale: In a double-slit experiment based on the wave theory of light, the bright fringes are the result of constructive interference. Constructive interference occurs when light waves from the two slits arrive at a point in phase, reinforcing each other and creating a bright fringe. This reinforcement leads to the constructive addition of the wave amplitudes, resulting in a bright spot on the screen. Destructive interference, which would result in dark fringes, occurs when waves are out of phase and cancel each other out. Increased diffraction and total internal reflection are not related to the formation of bright fringes in a double-slit experiment. Therefore, the correct answer is constructive interference.
Question 4 of 5
What is the primary purpose of control rods within a nuclear reactor?
Correct Answer: B
Rationale: The primary purpose of control rods in a nuclear reactor is to absorb excess neutrons to control criticality. When inserted into the reactor core, control rods absorb neutrons, reducing the number available for sustaining the fission chain reaction. This action allows operators to manage the reactor power levels and prevent overheating or runaway reactions. Reflecting neutrons back into the core and moderating neutron velocity are not the primary functions of control rods in a nuclear reactor. Choice A is incorrect because control rods do not reflect neutrons back into the core but absorb them. Choice C is incorrect as the moderation of neutron velocity is typically achieved by other materials like a moderator (e.g., water, graphite) rather than control rods. Choice D is incorrect as control rods do not reflect neutrons or moderate neutron velocity, making it an incorrect option.
Question 5 of 5
In nuclear physics, the term 'barn' is a unit commonly used to quantify:
Correct Answer: C
Rationale: In nuclear physics, the term 'barn' is a unit used to quantify nuclear cross-section. Nuclear cross-section is a measure of the probability of a nuclear reaction occurring when an atomic nucleus interacts with a particle or another nucleus. The barn is a unit of area equal to 10^-28 square meters; it is commonly used to describe the cross-sectional area of atomic nuclei for nuclear reactions. Choice A, 'Energy,' is incorrect because a barn is not a unit for measuring energy; it is a unit of area. Choice B, 'Radioactivity,' is incorrect as radioactivity is typically measured in units like becquerels. Choice D, 'Half-life,' is also incorrect as half-life is a measure of the time it takes for half of a substance to decay, not related to the concept of a barn as a unit of nuclear cross-section.