Which property describes a substance's resistance to flow?

Questions 113

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 science practice questions Questions

Question 1 of 5

Which property describes a substance's resistance to flow?

Correct Answer: B

Rationale: Viscosity is the property that describes a substance's resistance to flow. A substance with high viscosity flows slowly, while a substance with low viscosity flows quickly. Density (A) is the measure of mass per unit volume; conductivity (C) is the ability of a material to conduct electricity or heat, and reactivity (D) refers to how readily a substance undergoes chemical reactions. Therefore, the correct answer is B, viscosity, as it directly relates to a substance's resistance to flow.

Question 2 of 5

Which property of matter measures the amount of space occupied by an object?

Correct Answer: D

Rationale: Volume is the property of matter that measures the amount of space occupied by an object. Mass refers to the amount of matter in an object, weight is the force of gravity acting on an object, and density is the mass of an object per unit volume. Volume specifically quantifies the space occupied by an object, making it the correct answer in this context.

Question 3 of 5

What does the term 'electron configuration' refer to in relation to an atom?

Correct Answer: A

Rationale: The electron configuration of an atom refers to the arrangement of electrons in the atom's orbitals. This arrangement determines the atom's chemical properties and behavior. The number of protons in an atom's nucleus (option B) is known as the atomic number, which defines the element. The number of neutrons in an atom's nucleus (option C) contributes to the atom's mass number. The number of electrons in an atom's valence shell (option D) is important for understanding the atom's reactivity and bonding behavior, but the electron configuration specifically refers to how electrons are distributed among the different orbitals in an atom.

Question 4 of 5

What type of lens is thinner at the center than at the edges and causes light rays to diverge?

Correct Answer: B

Rationale: A concave lens is thinner at the center than at the edges, causing light rays to diverge when passing through it. This type of lens is also known as a diverging lens because it causes light rays to spread out. Concave lenses are used in various optical devices to correct vision problems and in scientific instruments to diverge light rays for specific purposes. The other choices are incorrect. A convex lens is thicker at the center and converges light rays, while a plano-convex lens has one flat surface and one convex surface, converging light. Diverging lens is a general term that can refer to concave or plano-concave lenses, but in this context, the specific type being referred to is a concave lens.

Question 5 of 5

How do spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints?

Correct Answer: D

Rationale: A) Misaligned chromosomes fail to attach to microtubules, triggering a delay in anaphase onset: Proper attachment of chromosomes to spindle fibers is essential for accurate segregation of genetic material during cell division. Misaligned chromosomes that fail to attach to microtubules can lead to delays in anaphase onset, allowing the cell to correct errors before proceeding with division. B) The presence of unattached kinetochores on the centromeres sends a signal to pause cell cycle progression: Kinetochores at the centromeres help attach chromosomes to spindle fibers. When kinetochores are unattached or improperly attached to microtubules, they signal the cell to pause cell cycle progression, ensuring proper chromosome alignment before division. C) Microtubule instability and rapid depolymerization lead to the activation of checkpoint proteins: While microtubule dynamics are crucial for cell division, microtubule instability and rapid depolymerization can disrupt chromosome attachment. However, this mechanism is not directly related to the activation of cell cycle checkpoint proteins, making this statement incorrect. Therefore, choices A and B accurately describe how spindle fiber dynamics and microtubule attachment regulate cell cycle checkpoints, making option D the correct answer.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions