ATI TEAS 7
TEAS Exam Math Practice Questions
Question 1 of 9
Which of the following is the correct solution to the equation 3x + 4 = 19?
Correct Answer: C
Rationale: To solve the equation 3x + 4 = 19, first, subtract 4 from both sides to isolate the term with x, which gives 3x = 15. Then, divide both sides by 3 to solve for x, resulting in x = 5. Therefore, the correct answer is x = 5. Choice A, x = 3, is incorrect as it does not satisfy the equation. Choice B, x = 4, is also incorrect as it does not make the equation true. Choice D, x = 6, is incorrect as it does not align with the correct solution obtained through the proper algebraic steps.
Question 2 of 9
x · 7 = x − 36. Solve the equation. Which of the following is correct?
Correct Answer: B
Rationale: To solve the equation x · 7 = x − 36, start by multiplying both sides by 7 to get 7(x · 7) = 7(x − 36), which simplifies to x = 7x − 252. Next, subtract 7x from both sides to get -6x = -252. Finally, divide both sides by -6 to solve for x, which results in x = 42. Therefore, the correct answer is x = 42. Choice A (x = 6), Choice C (x = 4), and Choice D (x = 252) are incorrect as they do not align with the correct solution derived from the equation.
Question 3 of 9
Anna is buying fruit at the farmers' market. She selects 1.2 kilograms of apples, 800 grams of bananas, and 300 grams of strawberries. The farmer charges her a flat rate of $4 per kilogram. What is the total cost of her produce?
Correct Answer: C
Rationale: To calculate the total cost, convert all weights to kilograms. 800 grams = 0.8 kilograms; 300 grams = 0.3 kilograms. Add up the weights: 1.2 kg + 0.8 kg + 0.3 kg = 2.3 kg. Multiply the total weight by the cost per kilogram: 2.3 kg $4/kg = $9.20. Therefore, the total cost of her produce is $9.20. Choice A, $4.40, is incorrect as it does not account for the total weight of all the fruits. Choice B, $5.24, is incorrect as it does not accurately calculate the total cost based on the given weights and price per kilogram. Choice D, $48.80, is incorrect as it is significantly higher than the correct total cost and suggests an incorrect calculation method.
Question 4 of 9
What is the perimeter of a rectangle with a length of 12 cm and a width of 5 cm?
Correct Answer: C
Rationale: The correct formula for the perimeter of a rectangle is P = 2(l + w), where l represents the length and w represents the width. Substituting the given values into the formula: P = 2(12 cm + 5 cm) = 2(17 cm) = 34 cm. Therefore, the perimeter of the rectangle is 34 cm. Choice A (17 cm) is incorrect as it seems to have added only the length and width without multiplying by 2. Choice B (24 cm) is incorrect as it does not consider the multiplication by 2. Choice D (40 cm) is incorrect as it seems to have added the length and width without multiplying by 2.
Question 5 of 9
A dry cleaner charges $3 per shirt, $6 per pair of pants, and an extra $5 per item for mending. Annie drops off 5 shirts and 4 pairs of pants, 2 of which need mending. Assuming the cleaner charges an 8% sales tax, what will be the amount of Annie's total bill?
Correct Answer: C
Rationale: To determine the total cost before tax, calculate: 5 shirts $3/shirt + 4 pants $6/pair of pants + 2 items mended $5/item mended = $49. Now, multiply this amount by 1.08 to include the 8% sales tax: $49 1.08 = $52.92. Therefore, Annie's total bill will be $52.92. Choice A, $45.08, is incorrect as it does not include the correct calculation for the total bill. Choice B, $49.00, is wrong because it is the total cost before tax and does not consider the added sales tax. Choice D, $88.20, is incorrect as it does not accurately calculate the total bill including the sales tax.
Question 6 of 9
What is 2.7834 rounded to the nearest tenth?
Correct Answer: C
Rationale: To round 2.7834 to the nearest tenth, we look at the digit in the hundredths place, which is 8. Since 8 is greater than or equal to 5, the digit in the tenths place is rounded up. Therefore, 2.7834 rounded to the nearest tenth is 2.8. Choice A (2.7) is incorrect because rounding down would require the digit in the hundredths place to be less than 5. Choice B (2.78) is incorrect because rounding to the nearest tenth involves considering the digit in the hundredths place. Choice D (2.88) is incorrect as it goes beyond rounding to just the nearest tenth.
Question 7 of 9
4 − 1/(22) + 24 · (8 + 12). Simplify the expression. Which of the following is correct?
Correct Answer: C
Rationale: First, complete the operations in parentheses: 4 − (1/22) + 24 · 20. Next, simplify the exponents: 4 − (1/22) + 24 · 20 = 4 − (1/4) + 24 · 20. Then, complete multiplication and division operations: 4 − (1/4) + 24 · 20 = 4 − 0.25 + 1.2. Finally, complete addition and subtraction operations: 4 − 0.25 + 1.2 = 4.95. Choice A, 1.39, is incorrect as it does not match the correct calculation. Choice B, 2.74, is incorrect as it is not the result of the given expression. Choice D, 15.28, is incorrect as it is not the correct simplification of the initial expression.
Question 8 of 9
Simplify the expression. What is the value of x? (5/4)x = 20
Correct Answer: D
Rationale: To solve for x, multiply both sides by the reciprocal of 5/4 to isolate x. (4/5)(5/4)x = (4/5)20; x = 16. Therefore, the correct answer is 32. Choice A (8), Choice B (16), and Choice C (24) are incorrect as they do not represent the correct value of x obtained after correctly simplifying the expression.
Question 9 of 9
Which statement about the following set is true? {60, 5, 18, 20, 37, 37, 11, 90, 72}
Correct Answer: D
Rationale: To find the median, we first need to arrange the set in ascending order: {5, 11, 18, 20, 37, 37, 60, 72, 90}. The median is the middle value, which is 37 in this case. The mean is calculated by adding all numbers and dividing by the total count, which gives a mean greater than 37. Therefore, the statement that the median is less than the mean is correct. Choice A is incorrect because the median and mean are not equal in this set. Choice B is incorrect as the mean is greater than the mode in this set. Choice C is incorrect as the mode is 37, which is equal to the median, not greater.