Questions 9

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS Exam Math Practice Questions

Question 1 of 5

Which of the following is equivalent to 8 pounds and 8 ounces? (Round to the nearest tenth of a kilogram.)

Correct Answer: B

Rationale: To convert 8 pounds and 8 ounces to kilograms, first convert 8 ounces to pounds by dividing by 16 (since 1 pound = 16 ounces): 8 ounces / 16 = 0.5 pounds. Then add this to the original 8 pounds: 8 pounds + 0.5 pounds = 8.5 pounds. To convert pounds to kilograms, use the conversion factor 1 pound = 0.453592 kilograms. Therefore, 8.5 pounds 0.453592 kg = 3.855 kilograms, which rounds to 3.9 kilograms. Choice A (3.6 kilograms), Choice C (17.6 kilograms), and Choice D (18.7 kilograms) are incorrect conversions or have errors in calculation compared to the correct conversion of 3.9 kilograms.

Question 2 of 5

Which of the following is equivalent to 3.28?

Correct Answer: D

Rationale: To convert a decimal to a fraction, we can treat it as a fraction over 1 and then simplify. For 3.28, it can be written as 3.28/1. To convert this to a fraction, we multiply by 100 to get (328/100). Then, to simplify, we divide both the numerator and denominator by 4 to get (82/25). This simplifies further to (7/25). Therefore, (7/25) is equivalent to 3.28. Choices A, B, and C are incorrect as they do not represent the decimal 3.28.

Question 3 of 5

What is the area of a triangle with a base of 10 cm and a height of 7 cm?

Correct Answer: B

Rationale: To find the area of a triangle, you use the formula A = 1/2 base height. Substituting the given values: A = 1/2 10 cm 7 cm = 35 cm². Therefore, the correct answer is B. Choice A (70 cm²) is incorrect as it seems to be the product of the base and height rather than the area formula. Choice C (140 cm²) is incorrect as it appears to be twice the correct answer, possibly a result of a miscalculation. Choice D (100 cm²) is incorrect as it does not reflect the correct calculation based on the given base and height values.

Question 4 of 5

A rectangular field has an area of 1452 square feet. If the length is three times the width, what is the width of the field?

Correct Answer: A

Rationale: To find the width of the rectangular field, use the formula for the area of a rectangle: A = length width. Given that the length is three times the width, you have A = 3w w. Substituting the given area, 1452 = 3w^2. Solving for w, you get 484 = w^2. Taking the square root gives ±22, but since the width must be positive, the width of the field is 22 feet. Choice B, 44 feet, is incorrect because it represents the length, not the width. Choice C, 242 feet, is incorrect as it is not a factor of the area. Choice D, 1452 feet, is incorrect as it represents the total area of the field, not the width.

Question 5 of 5

Melissa is ordering fencing to enclose a square area of 5625 square feet. How many feet of fencing does she need?

Correct Answer: C

Rationale: To find the side length of the square, we take the square root of the area: √5625 ft² = 75 ft. The perimeter of a square is 4 times its side length, so the fencing needed is 4 75 ft = 300 ft. Therefore, Melissa needs 300 feet of fencing to enclose the square area of 5625 square feet. Option A (75 feet) is the side length of the square, not the fencing needed. Option B (150 feet) is half of the correct answer and does not account for all sides of the square. Option D (5,625 feet) is the total area, not the length of fencing required.

Similar Questions

Join Our Community Today!

Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for ATI TEAS 7-ATI TEAS 7 and 3000+ practice questions to help you pass your ATI TEAS 7-ATI TEAS 7 exam.

Call to Action Image