Which of the following is an example of a chemical property of matter?

Questions 112

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 science study guide free Questions

Question 1 of 5

Which of the following is an example of a chemical property of matter?

Correct Answer: B

Rationale: Flammability is an example of a chemical property of matter because it describes how a substance reacts with oxygen in the air to produce heat and light. Chemical properties involve the ability of a substance to undergo a chemical change or reaction, such as burning. Boiling point, density, and conductivity are examples of physical properties, not chemical properties. Boiling point is the temperature at which a substance changes from a liquid to a gas, density is the mass of a substance per unit volume, and conductivity is the ability to conduct electricity. Therefore, flammability best exemplifies a chemical property as it pertains to the substance's reaction with oxygen, while the other options are physical properties that describe characteristics without changing the substance's chemical composition.

Question 2 of 5

Which property of matter refers to the measure of the force of gravity acting on an object?

Correct Answer: B

Rationale: The correct answer is 'Weight.' Weight is the measure of the force of gravity acting on an object. Mass refers to the amount of matter in an object, density is the mass per unit volume of a substance, and volume is the amount of space an object occupies. In this context, the question specifically asks for the property related to the force of gravity, making 'Weight' the correct choice. 'Mass' is the measure of the amount of matter in an object, 'Density' is the mass per unit volume of a substance, and 'Volume' is the space occupied by an object, none of which directly measure the force of gravity on an object.

Question 3 of 5

Which term describes the resistance of a substance to being hammered into different shapes?

Correct Answer: C

Rationale: Malleability is the property that allows a substance to be hammered or rolled into thin sheets without breaking. It is the opposite of brittleness. Ductility refers to the ability of a material to be drawn into thin wires, not hammered into shapes. Viscosity is the measure of a fluid's resistance to flow, indicating how thick or sticky it is, not related to shaping by hammering. Conductivity refers to the ability of a material to conduct electricity or heat, not resistance to being hammered into different shapes.

Question 4 of 5

What is the Aufbau principle?

Correct Answer: A

Rationale: The Aufbau principle states that electrons fill orbitals in order of increasing energy. This principle helps to explain the electron configuration of atoms and how electrons are distributed within the energy levels and sublevels of an atom. By following the Aufbau principle, one can determine the electron configuration of an atom by sequentially adding electrons to orbitals in order of their increasing energy levels, starting with the lowest energy level. Choice B is incorrect as it describes the Pauli Exclusion Principle, which states that no two electrons in an atom can have the same four quantum numbers. Choice C is incorrect as it refers to the formula for calculating the maximum number of electrons that can occupy an energy level. Choice D is incorrect as it relates to Coulomb's law, which describes the electrostatic interaction between charged particles.

Question 5 of 5

Which phenomenon describes the separation of light into its component colors when passing through a prism?

Correct Answer: C

Rationale: Dispersion is the phenomenon that describes the separation of light into its component colors when passing through a prism. When white light enters a prism, it is refracted at different angles depending on its wavelength, causing the colors to spread out. Refraction is the bending of light as it passes from one medium to another, not the separation of colors. Diffraction is the bending of light around obstacles, not the separation of colors. Reflection is the bouncing back of light rays from a surface, not the separation of colors. In the context of a prism, dispersion plays a key role in the creation of a spectrum of colors by separating the different wavelengths present in white light.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions