Which of the following factors does NOT affect the rate of dissolution of a solute in a solvent?

Questions 112

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 science study guide free Questions

Question 1 of 5

Which of the following factors does NOT affect the rate of dissolution of a solute in a solvent?

Correct Answer: B

Rationale: Pressure does not affect the rate of dissolution of a solute in a solvent. The factors that affect the rate of dissolution include temperature, surface area, and particle size. Temperature generally increases the rate of dissolution by providing more energy for the solute particles to break apart and mix with the solvent. Increasing the surface area of the solute by grinding it into smaller particles or increasing its contact area with the solvent can also speed up dissolution. Similarly, reducing the particle size of the solute can increase the rate of dissolution by providing more surface area for interaction with the solvent. Pressure, however, does not have a significant impact on the dissolution process and is not a factor that influences the rate at which a solute dissolves in a solvent.

Question 2 of 5

Which process allows for the movement of large molecules, such as proteins and polysaccharides, across the cell membrane?

Correct Answer: A

Rationale: Endocytosis is the process by which cells engulf large molecules or particles by wrapping the cell membrane around them to form a vesicle that is brought into the cell. This mechanism facilitates the movement of large molecules like proteins and polysaccharides across the cell membrane. Exocytosis involves the release of large molecules or particles from the cell, opposite to the scenario described in the question. Active transport requires energy to move molecules against their concentration gradient and is not primarily used for transporting proteins and polysaccharides. Facilitated diffusion entails the movement of molecules aided by transport proteins but is not the primary mechanism for transporting large molecules such as proteins and polysaccharides.

Question 3 of 5

What is the process of converting glucose into ATP, the cell's primary energy currency, called?

Correct Answer: A

Rationale: A) Cellular respiration is the correct answer. It is the process by which cells convert glucose into ATP, the primary energy currency of the cell. This process involves a series of biochemical reactions that occur in the mitochondria of eukaryotic cells or the cytoplasm of prokaryotic cells. Through cellular respiration, the energy stored in glucose molecules is gradually released and captured in the form of ATP. B) Fermentation is an anaerobic process that occurs in the absence of oxygen. It involves the partial breakdown of glucose to produce ATP and end products such as lactic acid or ethanol. While fermentation can generate ATP, it is less efficient than cellular respiration in terms of energy production. C) Photosynthesis is the process by which plants, algae, and some bacteria convert light energy into chemical energy in the form of glucose. This process occurs in chloroplasts and is the opposite of cellular respiration. While photosynthesis produces glucose, it is not the process of converting glucose into ATP. D) Hydrolysis is a chemical process that uses water to break down molecules into smaller components. It is not specifically related to converting glucose into ATP.

Question 4 of 5

What is the process of cells becoming specialized to perform specific functions called?

Correct Answer: B

Rationale: Cell differentiation is the process by which cells become specialized to perform specific functions. During differentiation, cells acquire specific structures and functions that allow them to carry out particular roles in the body. Cell division refers to the process by which a parent cell divides into two or more daughter cells. Cell growth is the process by which cells increase in size and number. Cell regeneration is the process by which new cells are produced to replace damaged or lost cells in an organism. Therefore, in this context, the process of cells becoming specialized to perform specific functions is best described as cell differentiation.

Question 5 of 5

What is the end result of mitosis in animal cells?

Correct Answer: A

Rationale: Mitosis is a type of cell division specific to eukaryotic cells that results in the production of two identical daughter cells, each with the same genetic material as the parent cell. This process is crucial for growth, tissue repair, and maintaining a constant number of chromosomes in multicellular organisms. During mitosis, the replicated chromosomes are segregated into two separate nuclei, followed by the division of the cell into two identical daughter cells. Options B, C, and D are incorrect as mitosis does not lead to the production of four haploid cells, a single diploid cell, or a single haploid cell. The correct answer is A because mitosis results in the formation of two daughter cells that are genetically identical to each other and to the parent cell, allowing for growth and replacement of damaged cells in multicellular organisms.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions