Which of the following accurately describes saltatory conduction?

Questions 173

ATI TEAS 7

ATI TEAS 7 Test Bank

ATI TEAS 7 Science Questions

Question 1 of 5

Which of the following accurately describes saltatory conduction?

Correct Answer: D

Rationale: The correct answer is D, 'All of the above.' Saltatory conduction is faster than normal nerve conduction, occurs from one node of Ranvier to the next, and is exclusive to myelinated neurons. This form of conduction allows for the rapid transmission of nerve impulses by the action potential jumping between the nodes of Ranvier in myelinated neurons, enhancing the efficiency of signal propagation along the axon. Choice A is correct as saltatory conduction is indeed faster than normal conduction. Choice B is accurate as it describes the mechanism of conduction 'jumping' from one node of Ranvier to the next. Choice C is correct because saltatory conduction occurs specifically in myelinated neurons where the myelin sheath insulates the axon except at the nodes of Ranvier, facilitating faster transmission of nerve impulses.

Question 2 of 5

What is the product of translation from an RNA template?

Correct Answer: C

Rationale: Translation is the process by which the genetic information carried by mRNA is decoded to synthesize a polypeptide chain. This essential process occurs at the ribosomes within the cell. The product of translation from an RNA template is a polypeptide, not DNA, lipid, or carbohydrate. DNA is involved in transcription, lipids are not directly produced in translation, and carbohydrates are not synthesized through translation. Therefore, the correct product resulting from translation from an RNA template is a polypeptide, making choice C, 'Polypeptide,' the correct answer.

Question 3 of 5

Which of the following neurotransmitters slows down the activity of neurons to prevent overexcitation?

Correct Answer: C

Rationale: The correct answer is C: GABA (gamma-aminobutyric acid). GABA is an inhibitory neurotransmitter that slows down neuronal activity, helping to prevent overexcitation in the brain. It counterbalances the effects of excitatory neurotransmitters like glutamate, playing a crucial role in maintaining the balance of neuronal activity in the brain. Acetylcholine (Choice A) is primarily an excitatory neurotransmitter involved in muscle movement and cognitive functions. Dopamine (Choice B) plays a role in reward-motivated behavior and motor control. Serotonin (Choice D) is involved in regulating mood, appetite, and sleep but is not primarily responsible for slowing down neuronal activity to prevent overexcitation.

Question 4 of 5

Which of the following types of immunity is provided by the secretion of antibodies by B-cells?

Correct Answer: B

Rationale: The correct answer is B: Humoral. Humoral immunity involves B-cells secreting antibodies to fight pathogens. In this type of immunity, antibodies circulate in the blood and other body fluids to neutralize pathogens and prevent infections. Cell-mediated immunity, on the other hand, involves the activation of T-cells to directly attack infected or abnormal cells, not the secretion of antibodies. Innate immunity refers to the nonspecific defense mechanisms the body has in place from birth, such as physical barriers and inflammatory responses. Phagocytic immunity is not a recognized type of immunity; phagocytosis is a mechanism used by cells like macrophages to engulf and digest pathogens, but it is not a specific form of immunity like humoral or cell-mediated immunity.

Question 5 of 5

What is molarity a measure of in a solution?

Correct Answer: C

Rationale: Molarity is a measure of the concentration of a solute in a solution. It is defined as the number of moles of solute per liter of solution. Molarity is not a measure of the volume of the solvent (choice A), the amount of solute (choice B), or the temperature of the solution (choice D). Therefore, the correct answer is the concentration of solute (choice C) as molarity specifically quantifies the solute concentration in a solution.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions