ATI TEAS 7
TEAS 7 science practice Questions
Question 1 of 5
When ethanol (Câ‚‚Hâ‚…OH) reacts with sodium metal (Na), what is the product?
Correct Answer: B
Rationale: When ethanol (C₂H₅OH) reacts with sodium metal (Na), the product formed is Sodium ethoxide (C₂H₅ONa). This reaction is a classic example of a metal displacing hydrogen in an alcohol to form an alkoxide. In this specific case, sodium replaces the hydrogen in ethanol, resulting in the formation of sodium ethoxide. Choice A, Ethene (C₂H₄), is incorrect as it is a different compound formed from the dehydration of ethanol, not its reaction with sodium. Choice C, Ethane (C₂H₆), is incorrect as it is a saturated hydrocarbon, not the product of the reaction of ethanol with sodium metal. Choice D, Sodium acetate (CH₃COONa), is incorrect as it involves acetic acid, not ethanol, reacting with sodium to form the salt sodium acetate.
Question 2 of 5
What type of reaction is represented by the following equation: Fe2O3 (s) + 3H2 (g) -> 2Fe (s) + 3H2O (g)?
Correct Answer: C
Rationale: The correct answer is C: Single displacement. This reaction is a single displacement reaction because the iron (Fe) in Fe2O3 is displaced by the hydrogen (H) in H2 to form Fe and H2O. In single displacement reactions, one element replaces another in a compound. Choice A, Combustion, involves a reaction with oxygen typically producing heat, light, and often a flame. Choice B, Decomposition, is when a compound breaks down into simpler substances. Choice D, Redox reaction, involves both reduction and oxidation reactions happening simultaneously, which is not the case in the provided equation.
Question 3 of 5
When unpolarized light passes through a polarizing filter, the intensity of the transmitted light is:
Correct Answer: B
Rationale: When unpolarized light passes through a polarizing filter, the filter only allows light waves oscillating in a specific direction to pass through while blocking light waves oscillating in other directions. Since unpolarized light consists of light waves oscillating in all possible directions, when it passes through a polarizing filter, only half of the light waves (those oscillating in the direction allowed by the filter) are transmitted. As a result, the intensity of the transmitted light is reduced by half. Choice A is incorrect because the light is not completely absorbed; choice C is incorrect because the polarizing filter affects the transmitted light; and choice D is incorrect because the intensity does not double, but rather decreases by half due to the selective transmission of light waves in a specific direction by the polarizing filter.
Question 4 of 5
What determines the defining characteristic of an element?
Correct Answer: C
Rationale: The defining characteristic of an element is determined by the number of protons in its nucleus, which is referred to as the atomic number. The number of protons uniquely identifies an element. The correct answer is choice C because the number of protons in the nucleus of an atom defines its elemental identity, as different elements have a unique number of protons. Neutrons and electrons do play essential roles in the atom, but they do not determine the defining characteristic of an element. Neutrons contribute to the stability of the nucleus and isotopes of an element, while electrons are involved in chemical bonding and the reactivity of an atom.
Question 5 of 5
Deuterium, a stable isotope of hydrogen, has a nucleus containing:
Correct Answer: B
Rationale: Deuterium, as an isotope of hydrogen, has an atomic number of 1 and a mass number of 2. The nucleus of deuterium contains one proton (as in all hydrogen atoms) and one neutron, totaling 2 nucleons in the nucleus. Therefore, the correct answer is that deuterium's nucleus contains a proton and a neutron. Choices A, C, and D are incorrect. Deuterium is not just a single proton (A), doesn't have two protons and an electron (C), and doesn't contain two neutrons (D). The correct composition of deuterium's nucleus is one proton and one neutron.