ATI TEAS 7
TEAS Practice Math Test Questions
Question 1 of 9
What was the mean time for the women who ran the 200m event at the 2008 Olympic Games (times in seconds: 22.33, 22.50, 22.50, 22.61, 22.71, 22.72, 22.83, 23.22)?
Correct Answer: C
Rationale: To find the mean time, you need to add all the times (22.33 + 22.50 + 22.50 + 22.61 + 22.71 + 22.72 + 22.83 + 23.22) and then divide by the total number of times (8). This calculation results in a mean time of 22.68 seconds. Choice A, 22.50 sec, is incorrect because it is the time of one of the runners, not the mean time. Choice B, 22.66 sec, and Choice D, 22.77 sec, are also incorrect as they are not the calculated mean of the given times.
Question 2 of 9
University X requires some of its nursing students to take an exam before being admitted into the nursing program. In this year's class, half of the nursing students were required to take the exam, and three-fifths of those who took the exam passed. If this year's class has 200 students, how many students passed the exam?
Correct Answer: C
Rationale: If the incoming class has 200 students, then half of those students were required to take the exam. (200)(1/2) = 100. So 100 students took the exam, but only three-fifths of that 100 passed the exam. (100)(3/5) = 60. Therefore, 60 students passed the exam. The correct answer is 60. Choice A is incorrect as it miscalculates the number of students who passed the exam. Choice B is incorrect as it does not consider the passing rate of the exam. Choice D is incorrect as it is much lower than the correct answer.
Question 3 of 9
Simplify the following expression: 0.0178 2.401
Correct Answer: B
Rationale: Failed to generate a rationale of 500+ characters after 5 retries.
Question 4 of 9
A patient requires a 30% decrease in their medication dosage. Their current dosage is 340 mg. What will their dosage be after the decrease?
Correct Answer: B
Rationale: To calculate a 30% decrease of 340 mg, multiply 340 by 0.30 to get 102. Subtracting 102 from 340 gives a new dosage of 238 mg. Choice A (70 mg) is incorrect as it represents a 80% decrease, not 30%. Choice C (270 mg) is incorrect as it does not reflect a decrease but rather the original dosage. Choice D (340 mg) is incorrect as it is the original dosage and not reduced by 30%.
Question 5 of 9
Chan receives a bonus from his job. He pays 30% in taxes, donates 30% to charity, and uses another 25% to pay off an old debt. He has $600 remaining. What was the total amount of Chan's bonus?
Correct Answer: D
Rationale: Chan has used 30% + 30% + 25% = 85% of his bonus, which leaves 15% remaining. Since 15% of his bonus is $600, you can find the total bonus amount by dividing $600 by 15% (or multiplying by 100/15), which equals $4,000. Therefore, the correct answer is $4,000. The other choices are incorrect because they do not accurately represent the total remaining amount after the specified deductions.
Question 6 of 9
What is the surface area of the cylinder shown below?
Correct Answer: D
Rationale: The surface area of a cylinder can be calculated using the formula: S = 2πr² + 2πrh, where r is the radius and h is the height. Substituting the values for radius (12) and height (8) into the formula: S = 2π(12)² + 2π(12)(8). S = 2π(144) + 2π(96). S = 288π + 192π. S = 480π ≈ 1507.964. Therefore, the surface area of the cylinder is approximately 1507.2 square centimeters. Choice A, 602.9 cm², is incorrect as it is significantly lower than the correct value. Choice B, 904.3 cm², is also incorrect as it does not match the calculated surface area. Choice C, 1,408.7 cm², is incorrect as it does not align with the calculated value of the surface area.
Question 7 of 9
Dr. Lee observed that 30% of all his patients developed an infection after taking a certain antibiotic. He further noticed that 5% of that 30% required hospitalization to recover from the infection. What percentage of Dr. Lee's patients were hospitalized after taking the antibiotic?
Correct Answer: A
Rationale: To find the percentage of Dr. Lee's patients hospitalized after taking the antibiotic, we need to calculate 30% of 5%. First, convert 30% and 5% to decimals: 30% = 0.30 and 5% = 0.05. Multiply 0.30 by 0.05 to get 0.015. To convert 0.015 to a percentage, multiply by 100, resulting in 1.5%. Therefore, only 1.50% of Dr. Lee's patients were hospitalized after taking the antibiotic. Choice A is correct. Choice B (5%) is incorrect as it represents the percentage of patients who developed an infection and not those hospitalized. Choices C (15%) and D (30%) are also incorrect percentages as they do not accurately reflect the proportion of hospitalized patients in this scenario.
Question 8 of 9
Which of the following is listed in order from least to greatest? (-2, -3/4, -0.45, 3%, 0.36)
Correct Answer: A
Rationale: To determine the order from least to greatest, convert all the values to a common form. When written in decimal form, the order is -2, -0.75 (which is equal to -3/4), -0.45, 0.03 (which is equal to 3%), and 0.36. Therefore, the correct order is -2, -3/4, -0.45, 3%, 0.36 (Choice A). Choice B is incorrect as it has the incorrect placement of -2 and 0.36. Choice C is incorrect as it incorrectly places -0.45 before -2. Choice D is incorrect as it incorrectly places 0.36 before 3%.
Question 9 of 9
Which of the following is listed in order from least to greatest? (-3/4, -7 4/5, -8, 18%, 0.25, 2.5)
Correct Answer: D
Rationale: To arrange the numbers from least to greatest, we first compare the integers, then the fractions, and finally the percentages and decimals. The correct order is -8, -7 4/5, -3/4, 18%, 0.25, 2.5. Choice A is incorrect because it incorrectly orders the fractions. Choice B is incorrect because it incorrectly places -8 after the fractions. Choice C is incorrect because it starts with the percentages instead of the integers, leading to an incorrect order.