What type of lens is thinner at the center than at the edges and causes light rays to diverge?

Questions 113

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 science practice questions Questions

Question 1 of 5

What type of lens is thinner at the center than at the edges and causes light rays to diverge?

Correct Answer: B

Rationale: A concave lens is thinner at the center than at the edges, causing light rays to diverge when passing through it. This type of lens is also known as a diverging lens because it causes light rays to spread out. Concave lenses are used in various optical devices to correct vision problems and in scientific instruments to diverge light rays for specific purposes. The other choices are incorrect. A convex lens is thicker at the center and converges light rays, while a plano-convex lens has one flat surface and one convex surface, converging light. Diverging lens is a general term that can refer to concave or plano-concave lenses, but in this context, the specific type being referred to is a concave lens.

Question 2 of 5

Which statement accurately describes the electron cloud model of the atom?

Correct Answer: B

Rationale: The electron cloud model of the atom describes electrons as occupying specific energy levels around the nucleus with varying probabilities. This model does not suggest that electrons precisely orbit in defined paths as stated in option A. It acknowledges the wave-like behavior of electrons and their uncertainty in position, which is not accounted for in options C and D. Option C is incorrect as electrons are not clustered tightly within the nucleus but exist in the space surrounding the nucleus. Option D is incorrect as electrons do not move randomly throughout the entire atom but have specific probabilities of being found in different regions based on their energy levels. Therefore, option B is the most accurate description of the electron cloud model of the atom.

Question 3 of 5

Why are isotopes of the same element chemically similar?

Correct Answer: A

Rationale: Isotopes of the same element are chemically similar because they have the same number of protons. The number of protons in an atom determines its atomic number, which is the defining characteristic of an element. Since chemical reactions primarily involve interactions between the electrons of atoms, having the same number of protons means the atoms have the same basic chemical properties. While isotopes may differ in the number of neutrons, it is the number of protons that dictates the element's identity and chemical behavior. Therefore, choice A is correct because the number of protons directly influences an element's chemical properties, making isotopes of the same element chemically similar despite potentially having different numbers of neutrons. Choices B, C, and D are incorrect because isotopes of the same element can have different numbers of electrons, their chemical properties are not identical due to potential differences in neutron numbers, and although they may have similarities in electron configurations, it is the number of protons that is the key factor determining chemical behavior.

Question 4 of 5

What information can be obtained from the mass number of an element?

Correct Answer: B

Rationale: The mass number of an element represents the total number of protons and neutrons in the nucleus. This information is crucial for determining the atomic mass of the element and understanding its stability and isotopes. The number of protons in the nucleus (option A) is represented by the atomic number, not the mass number. The number of electrons in the valence shell (option C) is related to the element's position in the periodic table and its chemical properties, but it is not directly determined by the mass number. The element's chemical reactivity (option D) is influenced by the number and arrangement of electrons in the atom's energy levels, not by the mass number.

Question 5 of 5

The number of protons in an atom is determined by its:

Correct Answer: D

Rationale: The number of protons in an atom is determined by its atomic number. The atomic number represents the number of protons in the nucleus of an atom, which also determines the element's identity. Therefore, the correct answer is (D) Atomic number. Choices (A) Atomic mass, (B) Electron configuration, and (C) Chemical properties are not directly related to the number of protons in an atom. Atomic mass is the total mass of protons, neutrons, and electrons in an atom. Electron configuration refers to the arrangement of electrons in an atom's energy levels, and chemical properties are determined by the arrangement of electrons in the outermost energy level.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions