ATI TEAS 7
TEAS 7 practice test science Questions
Question 1 of 5
What is the term for the distance between the center of a lens or curved mirror and its focal point?
Correct Answer: B
Rationale: The correct answer is B: Focal length. Focal length is the distance between the center of a lens or curved mirror and its focal point. It determines how strongly the lens converges or diverges light, affecting the image formation. Aperture, choice A, refers to the opening through which light enters the lens, controlling the amount of light passing through. Refractive index, choice C, measures how much light bends when passing through a medium, affecting the speed of light. Lens thickness, choice D, is the physical dimension of the lens, influencing optical properties and compatibility with frames.
Question 2 of 5
Which orbital can hold a maximum of 8 electrons?
Correct Answer: B
Rationale: The correct answer is the p orbital. Each p orbital can hold a maximum of 6 electrons (2 electrons in each of the 3 p orbitals), totaling 18 possible electrons when considering all three p orbitals. The s orbital can hold a maximum of 2 electrons, the d orbital can hold a maximum of 10 electrons, and the f orbital can hold a maximum of 14 electrons. Therefore, the p orbital is the orbital that can hold a maximum of 8 electrons, making it the correct choice.
Question 3 of 5
What happens when an atom loses an electron?
Correct Answer: B
Rationale: When an atom loses an electron, it gains a positive charge and becomes an ion. This occurs because the number of protons in the atom exceeds the number of electrons, leading to a positive charge. Therefore, the atom undergoes a transformation into an ion by losing an electron. Choice A is incorrect because losing an electron does not result in the formation of a molecule, as molecules are made up of bonded atoms. Choice C is incorrect because losing an electron does not change the fundamental identity of the atom; it only changes its charge. Choice D is incorrect because losing an electron causes the atom to become positively charged, altering its neutrality.
Question 4 of 5
Which type of orbital can hold a maximum of 10 electrons?
Correct Answer: D
Rationale: The correct answer is the f orbital. Each f orbital can hold up to 2 electrons. Since there are 5 f orbitals, the total maximum number of electrons that can be accommodated in f orbitals is 10 (2 electrons per orbital x 5 orbitals = 10 electrons). Therefore, the f orbital can hold a maximum of 10 electrons. Choice A, s orbital, is incorrect because it can hold a maximum of 2 electrons. Choice B, p orbital, is incorrect because it can hold a maximum of 6 electrons (3 orbitals x 2 electrons per orbital = 6 electrons). Choice C, d orbital, is incorrect as it can hold a maximum of 10 electrons (5 orbitals x 2 electrons per orbital = 10 electrons), but the question asks for the type of orbital that can hold a maximum of 10 electrons, not the total number of electrons in d orbitals.
Question 5 of 5
Why are elements in Group 18 (Noble gases) generally unreactive?
Correct Answer: C
Rationale: Elements in Group 18 (Noble gases) are generally unreactive because their outermost electron shells are completely filled. This results in high stability and low reactivity since they have achieved a full valence shell configuration, making them less likely to gain, lose, or share electrons with other atoms. The full valence shell configuration leads to a minimal tendency for these elements to form chemical bonds, hence exhibiting low reactivity. Choices A, B, and D are incorrect because high atomic masses, lack of valence electrons, and existing as single atoms do not directly contribute to the unreactivity of noble gases. It is the full valence shell configuration that is the primary reason for their inert nature.