ATI TEAS 7
TEAS 7 science practice questions Questions
Question 1 of 5
What is the term for a group of organisms with the same genetic makeup?
Correct Answer: B
Rationale: In this context, a clone (option B) is a group of organisms that are genetically identical because they are derived from a single ancestor. A population (option A) refers to a group of individuals of the same species living in the same area. Genotype (option C) refers to the genetic makeup of an individual organism. Species (option D) refers to a group of organisms that can interbreed and produce fertile offspring. Therefore, the most appropriate choice for the question is 'Clone,' as it specifically refers to organisms with the same genetic makeup.
Question 2 of 5
What is the main function of the gallbladder?
Correct Answer: A
Rationale: The gallbladder is a small organ located beneath the liver that plays a crucial role in the digestive system. Its main function is to store and concentrate bile, a digestive fluid produced by the liver. Bile is released from the gallbladder into the small intestine to help with the digestion and absorption of fats. The gallbladder acts as a reservoir for bile, allowing it to be released in a controlled manner when needed to aid in the digestion of fatty foods. Option A is the correct answer as it accurately describes the main function of the gallbladder. Choices B, C, and D are incorrect because the gallbladder does not produce digestive enzymes, absorb nutrients, or neutralize stomach acid. These functions are carried out by other organs in the digestive system, such as the pancreas, small intestine, and stomach, respectively.
Question 3 of 5
What is the term for the energy released during a chemical reaction?
Correct Answer: D
Rationale: The correct answer is 'Exothermic energy.' During an exothermic reaction, energy is released in the form of heat. The term 'exothermic' signifies that energy is moving outward, typically in the form of heat, throughout the reaction, leading to a decrease in the system's internal energy. Choice A, 'Kinetic energy,' refers to the energy of motion and is not specifically related to chemical reactions. Choice B, 'Potential energy,' is the energy stored within an object due to its position or state and is not directly related to energy released in a chemical reaction. Choice C, 'Heat energy,' is a form of energy but does not specifically describe the energy released during a chemical reaction.
Question 4 of 5
What is the process of a gas changing into a liquid called?
Correct Answer: C
Rationale: Condensation is the process where gas particles release energy, slow down, and come together to form a liquid. This phase change occurs when the temperature of the gas decreases, causing the particles to lose energy and transition into the liquid state. In condensation, the gas loses heat energy, leading to a decrease in kinetic energy, which allows the particles to come closer together and form a liquid. This transformation is commonly observed when water vapor in the air cools down and turns into liquid water droplets, seen as dew or fog. Evaporation (choice A) is the opposite process where a liquid changes into a gas. Boiling (choice B) is the rapid phase change from liquid to gas that occurs at a specific temperature. Sublimation (choice D) is the direct transition of a substance from the solid phase to the gas phase without passing through the liquid phase.
Question 5 of 5
What is the name for the change in enthalpy (heat) associated with a chemical reaction at constant pressure?
Correct Answer: D
Rationale: The correct answer is D, Heat of reaction. The heat of reaction, also known as the enthalpy change, is the amount of heat absorbed or released during a chemical reaction at constant pressure. Entropy (A) is a measure of the disorder or randomness of a system and is not specifically related to heat changes in a chemical reaction. Enthalpy (B) is the total heat content of a system and not just the change associated with a reaction. Gibbs free energy (C) is a measure of the energy available to do work in a system at constant temperature and pressure, but it is not the specific term for the heat change in a chemical reaction.