What is the primary factor that determines whether a solute will dissolve in a solvent?

Questions 108

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 practice test science Questions

Question 1 of 5

What is the primary factor that determines whether a solute will dissolve in a solvent?

Correct Answer: C

Rationale: The primary factor that determines whether a solute will dissolve in a solvent is the molecular structure. The compatibility of the solute's molecules with the solvent's molecules is crucial for dissolution to occur. While temperature, pressure, and particle size can influence the rate of dissolution, they are not the primary factors determining solubility. Molecular structure plays a key role in determining if a solute will form favorable interactions with the solvent, which is essential for dissolution to take place effectively. Temperature can affect solubility by changing the kinetic energy of molecules, pressure typically has a minor effect on solubility except for gases, and particle size influences the rate of dissolution by increasing surface area, but none of these factors are as fundamentally important as molecular structure in determining solubility.

Question 2 of 5

What is the process of removing waste products from the cell called?

Correct Answer: A

Rationale: A) Exocytosis is the process by which cells expel waste products or other substances by fusing a vesicle containing the waste with the cell membrane, releasing its contents outside the cell. This process is essential for maintaining cellular homeostasis by removing waste products from the cell. B) Endocytosis is the process by which cells take in substances by engulfing them in a vesicle formed from the cell membrane. This process is the opposite of exocytosis and is used to bring substances into the cell. C) Phagocytosis is a type of endocytosis where cells engulf solid particles or other cells to form a vesicle called a phagosome. This process is used by immune cells to engulf and destroy pathogens. D) Pinocytosis is a type of endocytosis where cells engulf fluids and dissolved solutes. This process allows cells to take in nutrients.

Question 3 of 5

What is the significance of the nuclear envelope breaking down during mitosis?

Correct Answer: B

Rationale: A) The breakdown of the nuclear envelope does not directly cause the chromosomes to condense and become visible. Chromosome condensation is a separate process that occurs before mitosis begins. B) The breakdown of the nuclear envelope is crucial for the formation of the spindle apparatus, a structure made of microtubules that helps separate the chromosomes during cell division. The spindle apparatus attaches to the chromosomes and helps move them to opposite poles of the cell. C) The separation of sister chromatids occurs during anaphase, which is facilitated by the spindle apparatus. The breakdown of the nuclear envelope is not directly involved in this process. D) The even distribution of nuclear material to daughter cells is achieved through the movement of chromosomes by the spindle apparatus, which is made possible by the breakdown of the nuclear envelope.

Question 4 of 5

What is the final stage of both mitosis and meiosis?

Correct Answer: B

Rationale: - Interphase (option A) is not the final stage of mitosis or meiosis; it is the phase before cell division where the cell prepares for division by growing and replicating its DNA. - Telophase (option B) is the final stage of both mitosis and meiosis. During telophase, the separated chromosomes reach opposite poles of the cell, the nuclear membrane reforms around each set of chromosomes, and the chromosomes begin to decondense. - Cytokinesis (option C) is the process of dividing the cytoplasm to form two separate daughter cells. While it occurs after telophase, it is not considered the final stage of mitosis or meiosis. - G1 phase (option D) is the first gap phase in the cell cycle, occurring before DNA replication. It is not the final stage of mitosis or meiosis.

Question 5 of 5

What is the product of the reaction between hydrochloric acid (HCl) and sodium hydroxide (NaOH)?

Correct Answer: A

Rationale: When hydrochloric acid (HCl) reacts with sodium hydroxide (NaOH), it forms sodium chloride (NaCl) and water (H2O) according to the following chemical equation: HCl + NaOH -> NaCl + H2O. Therefore, the correct answer is NaCl + H2O (Choice A). This reaction is a classic acid-base neutralization reaction where the acid (HCl) reacts with the base (NaOH) to form a salt (NaCl) and water (H2O). Choice B (NaOH + HCl) is incorrect because the order of the reactants matters in a chemical reaction, and in this case, HCl is the acid reacting with NaOH. Choices C (Na2Cl + H2O) and D (NaClO3 + H2) are incorrect because they do not represent the products of the reaction between HCl and NaOH as per the balanced chemical equation.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions