ATI TEAS 7
TEAS Test Math Questions Questions
Question 1 of 5
What is the median of the data set: 3, 5, 7, 9, 11?
Correct Answer: B
Rationale: To find the median of a set of numbers, you arrange them in ascending order and then find the middle value. Given the data set 3, 5, 7, 9, 11, when arranged in ascending order, becomes 3, 5, 7, 9, 11. The middle value in this set is 7, making it the median. Choice A (3) is the smallest value, not the middle value. Choice C (9) and Choice D (5) are not the middle values of the set either. Therefore, the correct answer is B (7).
Question 2 of 5
What is 4 + 5 + 12 + 9?
Correct Answer: B
Rationale: The correct answer is B: 30. To find the sum, you need to add 4 + 5 + 12 + 9, which equals 30, not 40 as stated in the original rationale. Choice A (20) is incorrect because it does not account for the correct addition of the numbers provided. Choice C (40) is incorrect as it represents the sum of the numbers incorrectly. Choice D (50) is also incorrect as it is not the sum of the given numbers.
Question 3 of 5
Simplify the expression 3x - 5x + 2.
Correct Answer: D
Rationale: When simplifying the expression 3x - 5x + 2, start by combining like terms. -5x is subtracted from 3x to give -2x. Adding 2 at the end gives the simplified expression -2x. Therefore, the correct answer is -2x. Choice A, -2x + 2, incorrectly adds 2 at the end. Choice B, -8x, incorrectly combines the coefficients of x without considering the constant term. Choice C, 2x + 2, incorrectly adds the coefficients of x without simplifying.
Question 4 of 5
What is the result of multiplying (3/5) by (5/8)?
Correct Answer: A
Rationale: To multiply fractions, multiply the numerators together and the denominators together. For (3/5) * (5/8), you get (3*5) / (5*8) = 15 / 40, which simplifies to 3/8. Therefore, the correct answer is A. Choice B (3/5) is incorrect as it is one of the original fractions being multiplied. Choice C (15/40) is the result of the multiplication but not simplified to its lowest terms. Choice D (3/30) is incorrect as the numerator is not the result of multiplying 3 and 5 together.
Question 5 of 5
Solve |x| = 10.
Correct Answer: A
Rationale: The absolute value of x is equal to 10 when x is either -10 or 10. Therefore, the correct answer is A. Choices B, C, and D are incorrect because they do not satisfy the equation |x| = 10. For choice B, -11 and 11 do not satisfy the condition. Choices C and D also do not provide solutions that meet the equation's requirement.
Similar Questions
Join Our Community Today!
Join Over 10,000+ nursing students using Nurselytic. Access Comprehensive study Guides curriculum for ATI TEAS 7-ATI TEAS 7 and 3000+ practice questions to help you pass your ATI TEAS 7-ATI TEAS 7 exam.
Subscribe for Unlimited Access