What is the difference between constructive and destructive interference of waves?

Questions 113

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 science practice Questions

Question 1 of 5

What is the difference between constructive and destructive interference of waves?

Correct Answer: B

Rationale: Constructive interference and destructive interference are two phenomena that occur when waves interact. Constructive interference leads to an increase in wave amplitude when two waves meet in phase, resulting in the alignment of peaks and troughs. This alignment results in the combined wave having a higher amplitude. On the other hand, destructive interference causes a decrease in amplitude as two waves meet out of phase, leading to their cancellation. When peaks align with troughs, they cancel each other out, resulting in a lower overall amplitude. This difference in effect on wave amplitude distinguishes between constructive and destructive interference. Choice A is incorrect because it does not specify the direction of change in amplitude for each type of interference. Choice C is incorrect as both constructive and destructive interference can occur in various types of waves, not affecting them differently based on wave type. Choice D is incorrect because while the relative phase of waves does determine the interference type, it is the amplitude that is affected by constructive and destructive interference, not the wave speed.

Question 2 of 5

What is the principle behind optical fibers used in communication?

Correct Answer: C

Rationale: Optical fibers used in communication rely on the principle of total internal reflection guiding light through the fiber core. Total internal reflection occurs when light traveling through the core of the fiber is reflected back into the core due to the higher refractive index of the core compared to the cladding. This reflection ensures that the light remains confined within the core and propagates along the fiber without significant loss, allowing for efficient transmission of signals over long distances in optical communication systems. Choice A is incorrect because optical fibers do not primarily rely on simple reflection; instead, they utilize total internal reflection to guide light. Choice B is incorrect as the primary principle is not the refraction of light due to different densities within the fiber, but rather total internal reflection. Choice D is incorrect as diffraction is not the main principle behind optical fibers, which mainly rely on total internal reflection to guide light through the fiber core.

Question 3 of 5

Which of Mendel's Laws states that alleles for a gene segregate during gamete formation?

Correct Answer: B

Rationale: The Law of Segregation, proposed by Gregor Mendel, states that alleles for a gene segregate during gamete formation. This means that each parent passes on only one allele for each gene to their offspring. This law explains how genetic diversity is maintained and how different combinations of alleles are generated in offspring. The Law of Independent Assortment (option A) is not the correct answer as it states that alleles of different genes assort independently of each other during gamete formation, not specifically alleles of a single gene. The Law of Dominance (option C) is incorrect as it pertains to the expression of alleles rather than their segregation during gamete formation. The Law of Probability (option D) is also incorrect as it is a general concept describing the likelihood of events, not specifically related to alleles segregating during gamete formation.

Question 4 of 5

What is the term for a genetic disorder caused by a mutation in a mitochondrial gene?

Correct Answer: D

Rationale: A) Autosomal dominant disorder: This type of genetic disorder is caused by a mutation in one copy of an autosomal gene. It is not related to mitochondrial gene mutations. B) Autosomal recessive disorder: This type of genetic disorder is caused by mutations in both copies of an autosomal gene. It is not related to mitochondrial gene mutations. C) Sex-linked disorder: This type of genetic disorder is caused by mutations in genes located on the sex chromosomes (X or Y). It is not related to mitochondrial gene mutations. D) Mitochondrial disorder: Mitochondrial disorders are genetic disorders caused by mutations in genes located in the mitochondria, the energy-producing structures within cells. These disorders are inherited maternally and can affect various organs and systems in the body due to the role of mitochondria in energy production.

Question 5 of 5

What is the process by which RNA molecules are modified after transcription but before translation?

Correct Answer: B

Rationale: B) Splicing is the correct answer. Splicing is the process by which non-coding regions (introns) are removed from pre-mRNA, and the remaining coding regions (exons) are joined together to form mature mRNA. This modification occurs after transcription but before translation. A) Replication is incorrect as replication is the process by which DNA is copied to produce a new DNA molecule, not RNA modifications. C) Editing may involve RNA editing, but it is not commonly used to describe the modification of RNA molecules after transcription. D) Packaging is not the correct term as it refers to the condensation and organization of DNA into chromatin in eukaryotic cells, not the modification of RNA molecules.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions