What are the two main types of nuclear decay, and what differentiates them?

Questions 112

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 science study guide free Questions

Question 1 of 5

What are the two main types of nuclear decay, and what differentiates them?

Correct Answer: B

Rationale: The correct answer is B. The two main types of nuclear decay are alpha and beta decay, which are differentiated based on the emitted particle. In alpha decay, an alpha particle (consisting of two protons and two neutrons) is emitted from the nucleus, while in beta decay, a beta particle (either an electron or a positron) is emitted. These decay types are distinguished by the particles they emit, not by the size of the nucleus, trigger, or stability of the nucleus. Choices A, C, and D are incorrect because fission, fusion, spontaneous, induced, isotope decay, and chain reactions are different processes in nuclear physics and do not represent the two main types of nuclear decay based on emitted particles.

Question 2 of 5

What is the difference between a germline mutation and a somatic mutation?

Correct Answer: B

Rationale: Rationale: - Germline mutations are changes in the DNA of reproductive cells (sperm or egg cells) and can be passed on to offspring, affecting all cells in the resulting organism. - Somatic mutations are changes in the DNA of non-reproductive cells (body cells) and are not passed on to offspring. These mutations only affect the cells that arise from the mutated cell. - Option A is incorrect because somatic mutations are not passed to offspring. - Option C is incorrect because both germline and somatic mutations can affect any DNA. - Option D is incorrect because the effects of mutations, whether germline or somatic, can be beneficial, harmful, or have no significant impact.

Question 3 of 5

What is the scientific term for the study of genes and their role in disease?

Correct Answer: D

Rationale: Genomic medicine is the scientific discipline that specifically focuses on the study of genes and their involvement in disease processes. It seeks to understand how variations in an individual's genes can influence their predisposition to certain diseases or affect their response to treatment. This field plays a crucial role in personalized medicine by utilizing genetic information to tailor healthcare decisions and interventions to individual patients. Molecular biology, biochemistry, and evolutionary biology, while related to genetics in various ways, do not have the primary focus on the role of genes in disease as genomic medicine does.

Question 4 of 5

Which organ helps break down food by grinding it with your teeth?

Correct Answer: D

Rationale: The correct answer is D: Mouth. The mouth is the organ that helps break down food by grinding it with your teeth. The process of chewing, also known as mastication, breaks down food into smaller pieces, making it easier to swallow and digest. The teeth in the mouth play a crucial role in this initial stage of digestion by physically breaking down food into smaller particles. The other options listed, such as the stomach, esophagus, and liver, do not directly participate in the mechanical breakdown of food through chewing. The stomach is responsible for further digestion through chemical processes, the esophagus is a muscular tube that helps transport food to the stomach, and the liver is primarily involved in metabolic functions and bile production.

Question 5 of 5

Which type of nutrient requires the most complex and lengthy digestion process?

Correct Answer: B

Rationale: Proteins require the most complex and lengthy digestion process compared to the other nutrient types provided. When proteins are consumed, they undergo a process where they need to be broken down into amino acids, which are essential building blocks of proteins. This intricate digestion process begins in the stomach aided by stomach acid and enzymes, proceeds to the small intestine where further enzymes break down proteins into amino acids, and concludes with the absorption of these amino acids into the bloodstream for various bodily functions. Carbohydrates and fats also require digestion, but the process for breaking down proteins into amino acids is notably more intricate and time-consuming. In contrast, vitamins do not require digestion in the same manner as proteins, carbohydrates, and fats because they are already in a form that can be readily absorbed by the body.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions