What are the moon-shaped white structures at the base of fingernails called?

Questions 111

ATI TEAS 7

ATI TEAS 7 Test Bank

TEAS 7 practice test free science Questions

Question 1 of 5

What are the moon-shaped white structures at the base of fingernails called?

Correct Answer: A

Rationale: The correct answer is A: Lunulae. The moon-shaped white structures at the base of fingernails are known as lunulae. They are most prominent on the thumb and are situated at the base of the nail matrix. The lunula is the visible part of the nail matrix, which is responsible for generating new nail cells. Choice B, Cuticle, is incorrect as it refers to the thin layer of skin at the base of the nail plate. Choice C, Hyponychium, is incorrect as it is the skin that lies beneath the free edge of the nail. Choice D, Matrix, is incorrect as it is the area where the nail is formed, located under the cuticle.

Question 2 of 5

What happens to the frequency of a wave when its wavelength is doubled, assuming the speed remains constant?

Correct Answer: B

Rationale: When the wavelength of a wave is doubled, and the speed of the wave remains constant, the frequency of the wave is halved. This relationship is governed by the equation speed = frequency x wavelength. Therefore, if the wavelength is doubled while the speed remains constant, the frequency must be halved to maintain a constant speed. Choice A is incorrect because frequency and wavelength are inversely proportional when speed is constant. Choice C is incorrect as doubling the wavelength does not result in a doubled frequency. Choice D is incorrect as the relationship between frequency, wavelength, and speed can be determined using the given information.

Question 3 of 5

What happens to the density of a gas when its temperature increases at constant pressure?

Correct Answer: B

Rationale: When the temperature of a gas increases at constant pressure, the average kinetic energy of the gas molecules increases. This leads to the gas molecules moving faster and spreading out more, which causes them to occupy a larger volume. As a result, the density of the gas decreases because the same number of gas molecules are now distributed over a larger space. Choice A is incorrect because as the gas molecules spread out, the density decreases. Choice C is incorrect because the increase in temperature leads to a decrease in density due to the increased volume occupied by the gas molecules. Choice D is incorrect because with the provided scenario of temperature increase at constant pressure, the effect on density can be determined.

Question 4 of 5

When two coherent light waves with a slight phase difference interfere, what determines the resulting intensity of the combined wave?

Correct Answer: A

Rationale: The resulting intensity of the combined wave is determined by the individual intensities of the waves. When two coherent light waves interfere, the amplitudes of the waves add up, and the resulting intensity is proportional to the square of the sum of the individual amplitudes. Therefore, the individual intensities of the waves play a crucial role in determining the resulting intensity of the combined wave. Choices B, C, and D are incorrect. The wavelength of the waves and the distance between the waves do affect interference patterns but not the resulting intensity. The color of the waves is determined by the wavelength and does not directly determine the resulting intensity of the combined wave.

Question 5 of 5

What is the process by which a large, unstable nucleus splits into two smaller nuclei, releasing neutrons and energy?

Correct Answer: D

Rationale: Nuclear fission is the correct answer. It is the process in which a large, unstable nucleus splits into two smaller nuclei, releasing neutrons and energy. Alpha decay, beta decay, and gamma decay involve the emission of alpha particles, beta particles, and gamma rays, respectively. These decay processes do not result in the splitting of a nucleus like nuclear fission does.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions