University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/5 of those who major in nursing complete the program. If this year's incoming class has 100 students, how many will complete the nursing program?

Questions 39

ATI TEAS 7

ATI TEAS 7 Test Bank

ATI TEAS Math Practice Test Questions

Question 1 of 5

University Q has an extremely competitive nursing program. Historically, 3/4 of the students in each incoming class major in nursing, but only 1/5 of those who major in nursing complete the program. If this year's incoming class has 100 students, how many will complete the nursing program?

Correct Answer: C

Rationale: Out of the 100 students, 3/4 major in nursing, which equals 75 students. However, only 1/5 of these 75 students will complete the program. Calculating 1/5 of 75 gives us 15 students who will complete the nursing program. Therefore, the correct answer is 15. Choice A (75) is incorrect as it represents the total number of students majoring in nursing, not completing the program. Choices B (20) and D (5) are incorrect calculations and do not align with the information provided in the question.

Question 2 of 5

A patient was taking 310 mg of an antidepressant daily. The doctor reduced the dosage by 1/5, and then reduced it again by 20 mg. What is the patient's final dosage?

Correct Answer: C

Rationale: To calculate the final dosage, first find 1/5 of 310 mg, which is 62 mg, and subtract it from the original dosage. This gives 310 mg - 62 mg = 248 mg. Then, subtract an additional 20 mg from the result to get the final dosage: 248 mg - 20 mg = 228 mg. Therefore, the patient's final dosage is 228 mg. Choice A (20 mg) is incorrect because it only considers the second reduction of 20 mg and misses the initial reduction by 1/5. Choice B (42 mg) is incorrect as it miscalculates the reduction amounts. Choice D (248 mg) is incorrect as it does not account for the second reduction of 20 mg.

Question 3 of 5

Joshua has to earn more than 92 points on a state test to qualify for a scholarship. Each question is worth 4 points, and the test has 30 questions. Which inequality can be solved to determine the number of questions Joshua must answer correctly?

Correct Answer: D

Rationale: Joshua must answer more than 92 points' worth of questions. Since each question is worth 4 points, the inequality is 4x > 92. Choice A (4x < 30) is incorrect as it represents that Joshua must answer less than 30 questions correctly, not earning more than 92 points. Choice B (4x < 92) is incorrect as it signifies that Joshua must earn less than 92 points, which contradicts the requirement. Choice C (4x > 30) is incorrect as it implies that Joshua must answer more than 30 questions correctly, but the threshold is 92 points, not 30 points.

Question 4 of 5

Complete the following equation: 2 + (2)(2) - 2 · 2 = ?

Correct Answer: A

Rationale: To solve the equation, follow the order of operations (PEMDAS/BODMAS): Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right). 1. Calculate inside the parentheses first: (2)(2) = 4. 2. Then, perform multiplication and division: 2 + 4 - 1 = 6 - 1 = 5. Therefore, the correct answer is 5. Choice B (3) is incorrect because multiplication is done before subtraction. Choices C (2) and D (1) are incorrect as they do not follow the correct order of operations to solve the equation.

Question 5 of 5

Solve for x: 2x + 6 = 14

Correct Answer: A

Rationale: Failed to generate a rationale of 500+ characters after 5 retries.

Access More Questions!

ATI TEAS Basic


$99/ 30 days

ATI TEAS Premium Plus


$150/ 90 days

Similar Questions